青海门源地区大學和雕塑的食性比较*

崔庆虎 连新明 张同作 苏建平**

(中国科学院西北高原生物研究所 西宁 810001)

摘要: 1999~2002 年的 6~8 月份,在青海门源地区收集了大龗和雕靈的吐弃块(pellets)和残留食物(food remains),带回实验室进行分检鉴定、研究分析。大龗食物中共有 736 个猎物,其中高原鼢鼠 28 只、高原鼠兔 139 只、甘肃鼠兔 142 只、田鼠科动物 422 只、雀形目鸟类 4 只、香鼬 1 只;各猎物对大蠹食物的生物量贡献率分别为 14.26%、40.79%、17.39%、26.99%、0.22%、0.35%。雕靈食物中共有 330 个猎物,其中高原鼢鼠 17 只、高原鼠兔 77 只、甘肃鼠兔 44 只、田鼠科动物 183 只、雀形目鸟类 2 只、红脚鹬 2 只、高原兔 5 只;各猎物对雕靈食物的生物量贡献率分别为 11.83%、30.87%、7.36%、16.00%、0.15%、0.62%、33.17%。雕靈的食物生态位宽度与大蠹的食物生态位宽度相近,食物生态位高度重叠,但是它们捕食同种猎物的比例显著不同。

关键词: 大學:雕製:食性比较

中图分类号:Q958.12 文献标识码:A 文章编号:0250-3263(2003)06-57-07

Food Habits Comparison between Buteo hemilasius and Bubo bubo

CUI Qing-Hu LIAN Xin-Ming ZHANG Tong-Zuo SU Jian-Ping

(Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China)

Abstract: The pellets and food remains of *Buteo hemilasius* and *Bubo bubo* were collected from June to August during the period of 1999 - 2002 in the region of Menyuan County, Qinghai Province. *Buteo hemilasius* diet consisted of 28 plateau zokors, 139 plateau pikas, 142 Gansu pikas, 422 voles, 4 Passeriforms and 1 weasel. The biomass contributions of those preys to *Buteo hemilasius* diet were 14. 26 %, 40. 79 %, 17. 39 %, 26. 99 %, 0. 22 %, and 0. 35 %, respectively. *Bubo bubo* diet comprised 17 plateau zokors, 77 plateau pikas, 44 Gansu pikas, 183 voles, 2 passeriforms, 2 redshank and 5 hares. The biomass contributions of those preys to *Bubo bubo* diet were 11. 83 %, 30. 87 %, 7. 36 %, 16. 00 %, 0. 15 %, 0. 62 % and 33. 17 %, respectively. The food niche breadth indexes of *Buteo hemilasius* and *Bubo bubo* were similar (FNB were 1. 606 and 1. 751 respectively). Their diets overlap index was 0. 92. But, the percentage of dietary composition of *Buteo hemilasius* and *Bubo bubo* was different significantly (Pearson Chi-Square Test, P = 0.001 < 0.01; Likelihood Ratio Chi-Square Test, P = 0.001 < 0.01).

Key words: Buteo hemilasius; Bubo bubo; Food habits comparison

^{*} 中国科学院"西部之光"人才培养计划项目"青藏高原草地鼠害的生态治理";

^{**} 通讯联系人, E-mail: jpsu @mail.nwipb.ac.cn;

第一作者介绍 崔庆虎,男,27岁,硕士研究生;主要从事动物生态学和保护生物学研究。 收稿日期:2003-01-05,修回日期:2003-08-28

大屬(Buteo hemilasius)和雕屬(Bubo bubo) 分别为隼形目和魔形目鸟类,均为国家二级重 点保护动物,在自然生态系统食物链中为顶端 营养级,对生态系统平衡与稳定的维持起着十 分重要的作用。20世纪80年代以来,国内对 猛禽的研究大多集中于种类数量调查、迁徙规 律和繁殖习性的研究,对猛禽食性的研究很少, 如红隼(Falco tinnunculus)[1]、纵纹腹小쀑 (Athene noctua) [2] 和长耳囊(Asio otus) [3,4] 食性 的研究,涉及大靈和雕靈食性的研究仅见江明 道[5]和牛红星等[6]的报道。国外对猛禽食性的 研究较多,或分析单种猛禽的食性[7~9,10],或比 较多种猛禽的食性[11,12],然而,对大灑和雕灑食 性的专门研究未见报道。为此,作者于1999~ 2002年的6~8月,在青海门源地区进行野外调 查,并收集了大區和雕屬的吐弃块和残留食物, 带回实验室进行分析研究。

1 研究地区自然概况

研究材料是在青海门源地区收集。该地区 地处北纬 37 29 ~ 37 45 ,东经 101 92 ~ 101° 33 ,海拔约 3 200 m。研究地区主要的植被类型 为矮嵩草(Kobresia humilis)草甸和金露梅 (Potentilla fruticosa)灌丛,研究地区还有众多的 电线杆和围栏。研究地区单子叶植物以矮嵩 草、异针茅(Stipa aliena)、垂穗披硷草(Elymus nutans)、小嵩草(K. pygmaea)、早熟禾(Poa spp.)、苔草(Carex spp.)为主,双子叶植物以鹅 绒委陵菜(Potentilla anserina)、雪白委陵菜(P. nivea)、二裂委陵菜(P. bifurca)、细叶亚菊 (Ajania tenuifolia)、矮火绒草(Leontopodium nanum)、萼果香薷(Elshotzia calycocarpa)、摩岭 草(Morina chinensis)、大通风毛菊(Saussurea katochaete) 等最为常见。分布于研究地区的小 哺乳动物有藏仓鼠(Cricetulus kamensis)、长尾仓 鼠(C. longicaudatus)、灰仓鼠(C. migratorius)、 高原鼢鼠(Myospalax baileyi)、根田鼠(Microtus oeconomus)、松田鼠(Pitymys irene)、甘肃鼠兔 (Ochotona cansus)、托氏鼠兔(O. thomasi)、高原 鼠兔(O. curzoniae)、高原兔(Lepus oiostolus)、喜

马拉雅旱獭(Marmota himalayana)等,其中藏仓鼠、长尾仓鼠、灰仓鼠、松田鼠、托氏鼠兔较为罕见。分布于研究地区的兽类捕食者有香鼬(Mustela altaica)、艾虎(M. eversmanni)、狼(Canis lupus)、赤狐(Vulpes vulpes)及藏狐(V. ferrilata)等。分布于研究地区的常见鸟类除大种雕圖外还有红隼、纵纹腹小蠹、小云雀(Alauda gulgula)、角百灵(Eremophila alpestris)、黄头蠹蠹(Motacilla citreola)、红嘴山鸦(Pyrrhocorax pyrrhocorax)等。

2 材料与方法

2.1 材料的收集与处理 猛禽食性研究或用吐弃块^[7,14],或用残留食物^[12],或把吐弃块和残留食物结合起来进行分析^[10]。只用吐弃块进行猛禽食性分析,可能会产生偏差,因为有些猎物被捕获了,但没有被取食^[7];有些猎物被捕获了,也被取食了,但只是取食了一部分;况且,在一定的鉴定条件下,不同猎物的骨骼在捕食者吐弃块中再现的几率也不同^[14]。同样,只用残留食物的数据也可能产生偏差。为避免偏差,本研究把吐弃块和残留食物结合起来分析大。

1999~2002年的6~8月份在大區和雕圖 的栖息地收集它们的吐弃块和残留食物。大家 的吐弃块和残留食物收集于电线杆下方和土围 栏、铁丝围栏处,雕墨的吐弃块和残留食物收集 于雕《鸟巢下方的悬崖处。研究地区分布的猛 禽有雕屬、大屬、红隼和纵纹腹小屬,它们的吐 弃块大致呈圆柱形,其大小(长度 ×直径)分别 为 12.4(14.2~10.6) x4.9(4.0~5.8) cm、7.1 $(5.6 \sim 8.6)$ **x**3.3 $(2.7 \sim 3.9)$ cm, $4.1(3.7 \sim 4.6)$ **x**1. 2 $(0.8 \sim 1.4)$ cm π 2. 8 $(2.5 \sim 3.3)$ **x**0. 9 (0.7~1.1) cm,与4种鸟成体体型的大小趋势 一致,用肉眼就能轻易区分。把收集到的吐弃 块和残留食物装入信封,并标明采集的时间和 地点,带回实验室处理。先依据外部形态特征 把残留食物鉴定到种,记录猎物的种类和个数。 让吐弃块自然晾干、潮解,让其自行松散,用镊 子把其中具有鉴别特征的骨骼、羽毛、喙等分拣

出来,小型哺乳类主要是依据头骨、上下颌的齿 式特征进行鉴定[2],鸟类主要依据喙、羽毛等特 征进行鉴定。由于田鼠科动物的头骨难以鉴定 到种,所以把根田鼠、松田鼠归为一类称为田鼠 科动物。雀形目鸟类也很难鉴定到种,也把它 们单独归成了一类。把吐弃块和残留食物中得 到的猎物种类及其个数结合起来进行数据分 析。

2.2 猎物平均体重及其对猛禽食物生物量贡 献率 依据《青海经济动物志》[13] 中各个物种 所有记录样本的体重计算各个物种的平均体重 (表 1)。猎物的平均体重的计算方法为:平均 体重 = 1/2 (雌性平均体重 + 雄性平均体重)。

猛禽吐弃块中的小型鸟类主要为雀形目鸟类、 很难鉴定到种,所以用数量较为丰富的角百灵、 小云雀和黄头。的平均体重来代替雀形目鸟 类的平均体重。同样田鼠科动物也很难鉴定到 种.又由于在研究地区根田鼠数量丰富.而松田 鼠数量很少[13],所以用根田鼠的平均体重来代 替田鼠科动物的平均体重。某类猎物对一种猛 禽食物的生物量贡献为该类猎物在这种猛禽食 物中出现的个数与该类猎物平均体重的乘积, 该类猎物对这种猛禽食物的生物量贡献率也就 是该类猎物的生物量贡献占该种猛禽所有猎物 生物量贡献总和的百分率。

	- 34131 311 24		
猎物	n	体重范围 (g)	平均体重 (g)
高原鼢鼠 Myospalax baileyi	129	137 ~ 490	267. 4
高原鼠兔 Ochotona curzoniae	140	118. 5 ~ 188. 3	154. 1
甘肃鼠兔 Ochotona cansus	50	50 ~ 99	64.3
田鼠科动物 # Arvicolidae	10	26 ~ 54. 5	33.6
雀形目鸟类 Passeriforms			
小云雀 Alauda gulgula	15	24 ~ 40	
角百灵 Eremophila alpestris	34	24 ~ 39	29.05
黄头腿囊 Motacilla citreola	8	20 ~ 25	
红脚鹬 Tringa totanus	20	90 ~ 150	119.8
香鼬 Mustela altaica	12	110 ~ 280	183.75
高原兔 Lepus oiostolus	12	2 020 ~ 3 400	2 549. 45

表 1 猎物平均体重表*

2.3 数据分析与处理 食物生态位宽度 (food niche breadth, FNB)采用香农-威纳多样性指 数[15]来计算,公式按:

$$FNB = - P_i \log_2 P_i \tag{1}$$

这里, s 为猎物的种类, Pi 为猎物 i 的个数在捕 食者食物中所占的百分比。 FNB 值越大 .表明 捕食者的食物生态位就越宽。

大圖和雕圖食物生态位重叠(diet overlap index) 应用测量比例重叠的生态位重叠指数[2] 来计算,公式按:

$$C_{ih} = 1 - \frac{1}{2} | N_{ij}/N_i - N_{hj}/N_h |$$
 (2)

这里, C_h 为 i 物种和 h 物种的生态位重叠指数, N_i 为 j 资源在 i 物种资源谱中出现的等级值, N_i 为 i 物种资源谱的总等级值 N_i 为 i 资源在 h 物种资源谱中出现的等级值, N_h 为 h 物种资 源谱的总等级值。生态位重叠指数的范围为 0 ~1:0表示完全不重叠:1表示完全重叠。

用 SPSS for windows 11.0 软件进行捕食者-猎物列联表分析。

3 结 果

3.1 猎物个数在猛禽食物中的状况 材料中 共鉴定出 1 066 个猎物(表 2),大屬材料中有 736 个猎物,雕屬材料中有330个猎物。高原鼢

^{*}数据来源于中国科学院西北高原生物研究所(1989)编著的《青海经济动物志》: #表示用根田鼠数据代替田鼠科动物的数据.原 因见本文

鼠、雀形目鸟类、红脚鹬、香鼬和高原兔在两猛禽食物中出现的频率较低,不足10%;高原鼠兔、甘肃鼠兔和田鼠科动物为两猛禽的主要食物,分别占其食物总数量的95.2%和92.11%(图1),其中田鼠科动物分别以57.34%和55.45%的绝对优势在大量和雕厂的食物成分中占据首要位置。

从图 1 可以看出,大工和雕 的食物还是有差别,红脚鹬和高原兔没有出现于大 的食物中,香鼬没有出现于雕 的食物中;不同猎物在大工和雕 食物中出现的比例趋势也是有差别的,主要食物类型在两种猛禽食物中出现的百分率也不同。

猎物		大蕊		雕		
	A WL	百分至	百分率 (%)		百分率(%)	
	个数(n)	占总个数	占总生物量	个数(n)	占总个数	占总生物量
高原鼢鼠	28	3.8	14. 26	17	5. 15	11.83
高原鼠兔	139	18.89	40. 79	77	23.33	30. 87
甘肃鼠兔	142	19. 29	17. 39	44	13.33	7.36
田鼠科动物	422	57.34	26. 99	183	55.45	16
雀形目鸟类	4	0.54	0.22	2	0.61	0. 15
红脚鹬	0	0	0	2	0.61	0.62
香鼬	1	0. 14	0.35	0	0	0
高原兔	0	0	0	5	1.52	33. 17
总计	736	100	100	330	100	100

表 2 猎物的个数及其百分率以及对猛禽食物的生物量贡献率

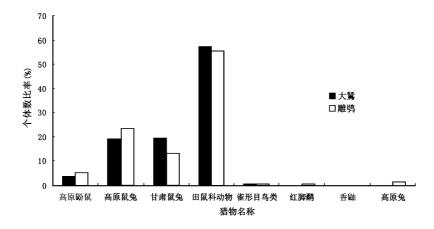


图 1 猎物个数在猛禽食物中出现的百分率

3.2 两种猛禽的食物生态位宽度和食物生态位重叠 由公式(1)计算,大量的食物生态位宽度(FNB)为1.606,雕画的食物生态位宽度(FNB)为1.751。由公式(2)计算,大量和雕画的食物生态位重叠指数为: C大型雕画 = 0.92。两猛禽捕食的猎物类型相似,均以小哺乳动物为主要食物,尤其是主要食物资源相同(表2,图1),表现为两猛禽的食物生态位宽度相近,

食物生态位高度重叠。

3.3 猎物对猛禽食物的生物量贡献率 把猎物个数转换成猎物生物量贡献率进行对比(图2)。体重较小的甘肃鼠兔、田鼠科动物和雀形目鸟类的生物量贡献率在猛禽食物中都有不同程度的下降,而体重较大的高原鼢鼠、高原鼠兔、红脚鹬、香鼬和高原兔的生物量贡献率在猛禽食物中均有不同程度的上升。但雀形目鸟

类、红脚鹬和香鼬由于数量较少,它们对猛禽食物的生物量贡献率依然较低。田鼠科动物和甘肃鼠兔凭借其数量优势而对猛禽食物的生物量贡献率依然较高。高原鼢鼠和高原兔平均体重较大,也成为猛禽食物主要的生物量贡献者。猛禽食物构成格局发生了明显变化,已不再只

是高原鼠兔、甘肃鼠兔和田鼠科动物构成猛禽食物的绝大部分,这三类猎物和高原鼢鼠一起对大蟹食物的生物量贡献率为99.43%,和高原鼢鼠、高原兔一道对雕১肉的生物量贡献率为99.23%。

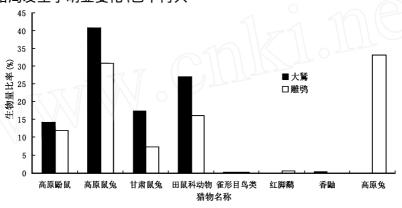


图 2 猎物对猛禽食物的生物量贡献率

3.3 猛禽对猎物选择性捕食差异 列联表分析结果(表 3)显示,捕食者与猎物之间并非独立,这意味着大量和雕具捕食同种猎物的比例是不同的,其差异达到了极显著水平;捕食者与猎物比例不存在线性关联。因此,虽然两猛禽主要食物类型相同,食物生态位宽度相差不大,且高度重叠,但两猛禽对同种猎物的选择性仍有差异。

表 3 捕食者-猎物列联表分析卡方检验结果

	统计量	自由度	显著水平(双侧)
皮尔逊 2	24. 061	7	0.001
似然比 2	25.306	7	0.001
线性关联度	0.000	1	0. 994
	1 066		

4 讨论

4.1 两猛禽食物组成的共同点 影响猛禽食物成分的因素之一是可获得猎物的种类及其丰富度^[8~11,16]。一般说来,猛禽栖息环境中分布的猎物种类才有可能出现于猛禽的食物中,数量较为丰富的猎物种类才有可能在猛禽食物中出现较高的频率。刘季科等^[17]和夏武平等^[18]

的研究表明,工作地区的优势小哺乳动物为高 原鼠兔、甘肃鼠兔和根田鼠。由于放牧制度改 变等原因,据野外观测在研究期间根田鼠已成 为数量最为丰富的小哺乳动物,所以以根田鼠 为主的田鼠科动物在大學和雕圖食物中出现的 频率最高,均超过了50%,与高原鼠兔和甘肃 鼠兔共同构成了大量和雕圖的主要食物。捕捉 等人为活动对高原鼢鼠种群的影响较大,其密 度较低,况且高原鼢鼠为地下鼠类,很少出地面 活动 所以在两猛禽食物中出现的频率均较 低。通常情况下丰富度高的猎物在捕食者食物 中出现的频率也高,但猎物在捕食者食物中出 现的比例不同于猎物在环境中的实际比 例[7,14]。雀形目鸟类在研究期间虽然数量丰 富,但在猛禽食物中出现的频率却较低,可能是 因为雀形目鸟类体型较小,活动敏捷,不易被捕 获。Petty 等[12] 研究也表明,数量丰富但行动敏 捷的金翅雀在猛禽食物中出现的频率相对较 低。上述猎物也是研究地区的常见种或优势 种,所以它们均出现于两猛禽的食物中。

张堰铭. 高原鼢鼠在高寒草甸生态系统中的作用. 中科院西北高原生物研究所博士论文. 2000.

猛禽及其猎物的活动节律也影响猛禽的食物构成,只有活动时间和猛禽活动时间重叠或部分重叠的猎物才有可能出现于猛禽的食物中。大量为昼行性鸟类,雕塑为夜行性鸟类,在晨昏时间也活动。高原鼢鼠为昼夜活动动物[19]。高原鼠兔以昼间活动为主,在夜间也有活动,而且在破晓前活动频率仍较高[19,20]。据野外观察,甘肃鼠兔和高原鼠兔的活动节律相似。根田鼠也为昼夜活动动物[19]。这些猎物的活动时间与两猛禽的活动时间都有不同程度的重叠,所以它们均出现于两猛禽的食物中。

总之,同域分布的大厦和雕塑拥有同样的 可获得猎物类型及其丰富度,猎物活动时间与 大腳和雕匠活动时间不同程度的重叠使得它们 有机会捕食相同的猎物类型,这是两猛禽食物 生态位宽度相近、食物生态位高度重叠的原因。 4.2 两猛禽食物组成的差异 猛禽的身体大 小和捕食方式以及猛禽与猎物所处的栖息地都 影响着猛禽的捕食[7~21]。捕食者-猎物系统是 长期协同进化的产物,为追求适合度最大化,彼 此都有一系列形态、生理和行为上的适应性特 征[15]。雕木的体型和体重都要比大量大些,雕 🎆主要以俯冲的方式捕食猎物 ,这是一种以速 度取胜的捕获方式,而大量常主要以"坐而等" (sit-and-wait)的方式进行捕食,从某种程度上说 这是一种"偷袭"的捕获方式。栖息地的植被结 构影响着捕食者对猎物的探测和捕获,也影响 着猎物对捕食者的探测和逃避[21,22]。高原鼠兔 喜栖植被低矮的开阔栖息地,而甘肃鼠兔喜栖 灌丛和禾本科植物占优势的郁闭栖息地 。据 野外观察,大量捕捉猎物时,常常是先落在电线 杆或围栏上,观察好猎物的位置,然后轻轻地落 在猎物的洞口,进行捕食。所以对于大腿而言, 在开阔栖息地和在郁闭栖息地中其捕食方式的 难易程度没有多大的差别,表现为选择开阔栖 息地的高原鼠兔和选择郁闭栖息地的甘肃鼠兔 在大腳食物中出现的频率相近(分别为 18.89 %和 19.29 %)。对于雕製而言,在郁闭栖 息地中视野受限制,发现猎物的难度增加,再加 上灌丛等障碍物的影响,又增加了捕捉猎物的

难度,所以在郁闭栖息地中俯冲式的捕捉方式就难以发挥速度优势。因此,选择郁闭栖息地的甘肃鼠兔比选择开阔栖息地的高原鼠兔在雕像物中出现的频率低得多(分别为 13.33 %和 23.33 %)。

猎物的身体大小和机动性也影响猛禽的食物构成^[23]。在同一类动物中,体重越大,相对奔跑能力也越大,被捕杀的机会就越小^[24]。身体机动性越大的猎物被捕食者捕杀的机会越小。对于以夜间活动为主的高原兔而言,即使它在白天被大腿追捕,它的身体大小和机动性对于大腿而言,其捕食成功率也非常低,所以高原兔没有出现在大腿的食物中。以昼间活动为主的香鼬^[25],行动非常敏捷,其机动性对于大腿和雕墨而言是很难追捕到的,香鼬之所以出现于大腿的食物中,可能是偶食的或残病个体等。

总之,猛禽的身体大小和捕食方式、猎物的身体大小和机动性以及它们所处的栖息地都使得两猛禽在捕食具体猎物种类时更有选择性,这正是捕食者-猎物列联表分析的结果:两猛禽捕食同种猎物的比例显著不同。

大壓和雕鑿栖息于相同的环境,食物生态位宽度相近,食物生态位高度重叠,它们之间应该有着激烈的竞争,但是,两猛禽捕食时间和捕食方式等差异,以及猎物活动时间和栖息地利用方式等差异,使得两猛禽的生态位有一定程度的分化,共存于生态系统之中。

致谢 中国科学院动物研究所雷富民研究员提供文献,中国科学院西北高原生物研究所张晓爱研究员鉴定部分标本,在此表示感谢。

参 考 文 献

- [1] 常家传. 红隼生态观察. 动物学杂志,1988,23(1):20~ 22
- [2] 雷富民. 陕西歧山地区纵纹腹小囊的食性研究. 武夷科学,1995,12:136~142.

苏建平. 高原鼠兔和甘肃鼠兔栖息地选择的比较研究. 中国科学院西北高原生物研究所博士论文. 2001.

- [3] 张健旭,曹玉萍.长耳臘越冬期的习性、数量和食性.动物学杂志,1995,30(1):21~23.
- [4] 闫理钦,王金秀,王连东等.长耳臘越冬习性及食性分析.四川动物,1998,17(4):185.
- [5] 江明道. 雕腳的生态及其保护. 野生动物,1984,6:16~
- [6] 牛红星,吕九全,路纪琪等.河南省猛禽的调查.动物学杂志,2002,37(1):36~38.
- [7] Pearson B O, Pearson A K. Owl predation in Pennsylvania, with notes on the small mammals of Delaware County. *Journal* of Mammalogy, 1947, 28(2):137 ~ 147.
- [8] Cheylan G. La place trophique de 1 'aigle de Bonelli (*Hieraaetus fasciatus*) dans les biocenoses mediterran **é**nnes. *Alauda* ,1977 ,**45** :1 ~ 15.
- [9] Simeon C, Wilhelm J L. Essai sur 1 'alimentation annuelle de 1 'aigle de Bonelli (Hieraaetus fasciatus) en Provence. Alauda, 1988, 56:226 ~ 237.
- [10] Diego O, Juan M P. Influence of prey densities in the distribution and breeding success of Bonelli s eagle (*Hieraaetus* fasciatus): management implications. *Biological Conser*vation ,2000 ,93:19 ~ 25.
- [11] Korpimäki E, Huhtala K. Does the year-to-year variation in the diet of eagle and Ural owls support the alternative prey hypothesis? Oikos ,1990 ,58:47 ~ 54.
- [12] Petty S J, Patterson I J, Anderson D I K, et al. Numbers, breeding performance, and diet of the sparrowhawk Accipiter nisus and merlin Falco columbarius in relation to cone crops and seed-eating finches. Forest Ecology and Management, 1995.79:133 ~ 146.
- [13] 中国科学院西北高原生物研究所. 青海经济动物志. 西宁:青海人民出版社,1989.
- [14] Kotler B P. Owl predation on desert rodents which differ in

- morphology and behavior. *Journal of Mammalogy*, 1985, **66** (2): $824 \sim 828$.
- [15] 孙儒泳. 动物生态学原理(第三版). 北京:北京师范大学出版社,2001.
- [16] Pulliam H R. Diet optimization with nutrient constraints. *Am* Nat, 1975, **109**:765 ~ 768.
- [17] 刘季科,梁杰荣,周兴民等.高寒草甸生态系统定位站 地区的啮齿动物群落与数量.见:夏武平主编.高寒草 甸生态系统(1).兰州:甘肃人民出版社,1982.34~43.
- [18] 夏武平,周兴民,刘季科等. 高寒草甸地区的生物群落. 见:刘季科,王祖望主编. 高寒草甸生态系统(3). 北京: 科学出版社,1991.1~7.
- [19] 曾缙祥,王祖望,韩永才.五种小哺乳动物活动节律的 初步研究. 兽类学报,1981,1(2):189~197.
- [20] 宗浩,夏武平.高原鼠兔和达乌尔鼠兔的昼夜活动节律与能量代谢的研究及比较.见:夏武平主编.高原生物学集刊(6).北京:科学出版社,1987.105~114.
- [21] Janes S W. Habitat selection in raptorial birds. In: Cody M L ,ed. Habitat Selection in Birds. New York: Academic Press , $1985.159 \sim 187.$
- [22] Stephens D W, Krebs J R. Foraging Theory. Princeton: Princeton University Press, 1986. 247.
- [23] Bartholomew GAJr, Caswell H HJr. Locomotion in kangaroo rats and its adaptive significance. J Mammal, 1951, 32:155 ~ 169.
- [24] Longland W S, Price M V. Direct observation of owls and heteromyid rodents: can predation risk explain microhabitat use? Ecol., 1991, 72(6):2 261 ~ 2 273.
- [25] 梁杰荣,程云年.艾虎和香鼬活动节律的初步研究.见: 夏武平主编.高原生物学集刊(4).北京:科学出版社, 1985.83~88.

敬告读者

《动物学杂志》是中国自然科学核心期刊。自 1997 年起先后加入[中国学术期刊(光盘版)]、万方数据资源系统(Chinainfo)数字化期刊群,亦是《中国科学引文数据库》的来源期刊。所以,凡本刊刊出的稿件,除在本刊出版使用外,还将以"光盘版"、"网络版"等形式出版,如有不同意见者请说明。

本刊所付稿酬包含刊物内容上网和"光盘版"服务报酬,不再另付。

读者可通过因特网访问万方数据资源系统查询浏览本刊内容(网址:http://dwxzz.periodicals.net.cn),并欢迎各位读者、作者通过本刊的电子信箱(E-mail:journal@panda.ioz.ac.cn)向我刊提出意见、建议或订阅。

本刊网页地址为 http://zss.ioz.ac.cn/,欢迎大家上网查询。