三种茄科植物种子无菌苗繁殖体系的初建

雷天翔123 蔡晓剑4 周党卫123* 李松龄4 王 环1 沈建伟1

(1. 中国科学院西北高原生物研究所 清海 西宁 810001; 2. 中国科学院高原生物适应与进化重点实验室 , 青海 西宁 810001; 3. 中国科学院研究生院 ,北京 100049; 4. 青海大学土壤肥料研究所 ,青海 西宁 810016)

摘要 目的: 以马尿泡、山莨菪、天仙子的野生种子为材料 建立这三种茄科植物种子无菌苗繁殖体系 ,为开展生物实验研究及其野生种质资源的保存提供了技术参考。方法: 将野生种子经过不同因子(预处理赤霉素浓度、消毒试剂、消毒时间、培养温度) 的组合处理后点播在 MS 培养基上 ,以种子发芽率、污染率和成苗率为观测指标 探讨不同因子对建立 3 种植物种子无菌苗繁殖体系的影响。结果: 将野生种子用 400 ppm 赤霉素预处理 24 h 后 ,75% 酒精消毒 1 min ,50% NaClO 消毒 20 min 22 ℃ 暗培养待种子发芽后转入光照培养箱培养 ,能够有效地获得马尿泡、山莨菪、天仙子的种子无菌苗。结论: 初步建立马尿泡、山莨菪、天仙子种子无菌苗繁殖体系。

关键词 马尿泡; 山莨菪; 天仙子; 种子无菌苗

中图分类号: R282. 2 文献标识码: A 文章编号: 1001-4454(2015) 03-0447-04

DOI: 10. 13863/j. issn1001-4454. 2015. 03. 005

马尿泡 Przewalskia tangutica Maxim.、山莨菪 Anisodus tanguticus(Maxim.) Pasch. 、天仙子 Hyoscyamus niger L. 是生长在青藏高原海拔 3 200 ~ 5 000 m 的茄科天仙子亚族的不同属(马尿泡属、山莨菪 属、天仙子属)植物,这三种植物在孢粉学、胚胎学、 花器官发生、种子微形态方面具有一些相似的特征, 关系较近[13]。同时 这三种植物体内都含有东莨菪 碱(Scopolamine)、山莨菪碱(Anisodamine)、阿托品 (Atropine) 等托烷类生物碱^(4,5)。托烷类生物碱是 作用在反副交感神经系统的一类药物 具有解痉止 痛、消肿的功效,可用于治疗胃痛、胆绞痛、急慢性胃 肠炎、无名肿痛,也对中枢神经系统、心血管系统起 作用,外用可以治疗皮肤病,有很大的开发前景(6)。 目前 对于托烷类生物碱的生产方式主要包括化学 合成和从野生植物内提取 选用化学合成的方法存 在生产周期长、合成有效成分的产量较低 因此不能 作为一种十分经济的手段,而从野生植物中提取的 方法既破坏生态环境又造成植物资源的大量浪费而 濒临灭绝,更加不能满足日益增长的市场需求(7)。 目前,大量的研究多集中在通过对野生资源的驯化 种植和生物技术手段来生产生物碱。由于地域、气 候条件的限制 驯化种植野生资源的困难较大 而建 立在无菌基础上的细胞培养技术和发根培养技术相 比具有明显优势。

本研究以 3 种茄科植物马尿泡、山莨菪、天仙子 野生种子为材料,通过测定不同因子(预处理赤霉 素浓度、消毒试剂、消毒时间、培养温度) 对建立无菌苗繁殖体系的影响,以期探索出此三种植物的无菌苗繁殖体系最佳组合,一方面可以与组织培养技术相互配合来有效的保存种质资源;另一方面,可以为通过生物技术手段(如细胞培养技术和发根培养技术)提高生物碱产量的研究提供材料基础。

1 材料与方法

- 1.1 材料 马尿泡种子(2013年9月16日采自青海省果洛州,海拔4200 m)、天仙子种子(2013年9月17日采自青海省海北州海晏县,海拔3000 m)、山莨菪种子(2013年9月8日采自青海省海北藏族自治州门源回族自治县,海拔4000 m)。
- 1.2 方法 马尿泡无菌苗的获得: 将不同因子设计 为 4 因素 4 水平的正交试验 ,见表 1。取马尿泡种子 ,用自来水冲洗 3 次 ,弃用漂浮种子 ,然后按照正交表 对马尿泡种子做预处理后与 75% 酒精配合消毒。将处理好的种子点播在装有 30 mL MS 固体培养基的 150 mL 三角瓶内 ,每瓶点播 5 粒种子 ,重复 6 次。

表 1 $L_{16}(4^5)$ 正交试验因子水平表

	因素					
水平	A. 赤霉素 浓度/ppm	B. KMnO ₄ 浓度/%	C. 消毒时间 /min	D. 培养温度 /℃		
1	300	0. 05	5	18		
2	400	0.10	10	22		
3	500	0. 15	15	26		
4	600	0. 20	20	30		

收稿日期: 2014-07-14

基金项目: 2010 年度中国科学院"西部之光"人才培养计划项目(Y229151211,Y129331211); 国家自然科学基金(31070208); 中国科学院重点创新计划((KSCX2-EW-J-26)

作者简介: 雷天翔 (1990) 男 在读硕士研究生 ,专业方向: 生态学; E-mail: m15297090302@163. com。 * 通讯作者: 周党卫 ,E-mail: dangweizhou@ sina. com。

最适消毒组合的筛选选择 3 种常用消毒试剂 $(0.1\% \, \mathrm{HgCl_2}, 20\% \, \mathrm{NaClO}, 50\% \, \mathrm{NaClO})$,分别按照 $0.1\% \, \mathrm{HgCl_2}$ 消毒 $1.2.3.4.5 \, \mathrm{min}$,20% NaClO 消毒 $20.25.30 \, \mathrm{min}$ 50% NaClO 消毒 $10.15.20 \, \mathrm{min}$ 进行完全随机组合 ,共计 $11 \, \mathrm{个处理}$ 。将 $400 \, \mathrm{ppm}$ 赤霉素 预处理的马尿泡种子用 75% 酒精消毒 $1 \, \mathrm{min}$ 后按照 实验设计进行消毒 ,然后点播在装有 $30 \, \mathrm{mL}$ MS 固体培养基的 $150 \, \mathrm{mL}$ 三角瓶内 ,每瓶点播 $5 \, \mathrm{粒种子}$,重复 $6 \, \mathrm{次}$ 。

山莨菪、天仙子种子无菌苗的获得: 分别将经过400 ppm 赤霉素处理24 h 的山莨菪、天仙子种子用75% 酒精消毒1 min,50% NaClO 消毒10、15、20 min,无菌水冲洗6次,每次3 min,然后点播在装有30 mL MS 固体培养基的150 mL 三角瓶内,每瓶点

播5粒种子 重复6次。

- 1.3 培养条件 黑暗条件: 温度为(22 ± 2) [℃] 恒温培养箱培养。光照条件: 温度为(22 ± 2) [℃] ,光照强度为 3 000 Lx ,12 h/d 光照条件下培养。
- 1.4 数据分析 发芽率 = 发芽种子个数/接种种子总数×100%; 污染率 = 污染种子个数/接种种子总数×100%; 成苗率 = 发芽率×X(注: 当瓶内种子有污染时 X=0; 当瓶内种子无污染时 X=1)。

正交试验方差分析选用 DPS 3.01 专业版进行分析。

2 结果与分析

2.1 不同因子对马尿泡种子发芽率的影响 无菌条件下对种子发芽率的主要影响因子包括激素、消毒种类、消毒时间以及培养温度。李华赐等⁽⁸⁾研究

表 2 不同因子对马尿泡种子发芽率的影响

₹₹ 4	个问题上的 与成化性工友牙举的影响							
处理	A. 赤霉素	B. KMnO ₄ 浓度/%	C. 消毒时间 D. 培养温度 _ /min /℃	发芽率/%			 平均	
	浓度/ppm			/℃	重复一	重复二	重复三	 发芽率/%
1	300	0.05	5	18	70. 0	50. 0	70. 0	63. 33
2	300	0. 10	10	22	63.6	63.6	60. 9	62.70
3	300	0. 15	15	26	70.0	72.7	63.6	68.77
4	300	0. 20	20	30	45. 5	41.7	41.7	42. 97
5	400	0.05	10	26	48. 2	57.3	88. 3	64.60
6	400	0. 10	5	30	84. 6	70.0	50.0	68. 20
7	400	0. 15	20	18	70. 0	100.0	54. 5	74. 83
8	400	0. 20	15	22	60.0	70.0	70.0	66. 67
9	500	0.05	15	30	78. 3	78. 3	62. 9	73. 17
10	500	0. 10	20	26	81.8	66.7	50.0	66. 17
11	500	0. 15	5	22	55. 5	54. 5	56. 4	54. 47
12	500	0. 20	10	18	36. 4	18. 2	41.7	32. 10
13	600	0.05	20	22	76. 2	72.9	78. 6	75. 90
14	600	0. 10	15	18	77.8	72.7	45. 5	65. 33
15	600	0. 15	10	30	50.0	60.0	60.0	56. 67
16	600	0. 20	5	26	54. 5	60.0	60.0	58. 17
T1	713.3	822. 9	680. 7	768. 2				
T2	831.0	787. 2	767. 2	599.7				
T3	735. 5	648. 2	821.8	799. 6				
T4	706. 8	782. 2	773. 1	723. 0				
R	11. 85	19. 28	14. 47	6. 28				
最优水平	\mathbf{A}_2	\mathbf{B}_1	C_3	D_2				

表3	————————————————————— 不同因子对马尿泡种子发芽率影响的方差分析							
 变异来源	平方和	自由度	均方	F 值	显著水平			
A	978. 2939	3	326. 0979	2. 2561				
В	2564. 6056	3	854. 8685	5. 9146	**			
C	1379. 1156	3	459. 7052	3. 1805	*			
D	342. 5156	3	114. 1718	0. 7899				
误差	4625. 1333	32	144. 5354					

注: $F_{0.05}(3\ 32) = 2.9\ F_{0.01}(3\ 32) = 4.46$; * P < 0.05, ** P < 0.01

报道,马尿泡在自然条件下发芽率极低,仅为1.3% 赤霉素浸泡能够提高马尿泡和山莨菪种子在自然条件下的发芽率,可分别提高至80%、86%。 $KMnO_4$ 是一种常见的消毒试剂,常用于花卉组织培养的消毒。培养温度是影响种子萌发的条件之一,如天仙子种子在25 $^{\circ}$ 条件下培养,发芽率最高,为57.6% $^{(9)}$ 。通过对4 种因素(赤霉素预处理浓度、 $KMnO_4$ 浓度、消毒时间、培养温度)组合对马尿泡种子发芽率的影响来初步确定主要因子,试验结果统计见表2。

正交试验方差分析结果如表 3 所示 $,KMnO_4$ 的浓度对种子的发芽率有显著影响。当 $KMnO_4$ 的浓度为 0.05% 时 ,种子的发芽率最高 <math>,平均发芽率为 69.25%。赤霉素处理有提高马尿泡种子发芽率的作用 ,但 $300\sim600$ ppm 差异不显著 ,这与李华赐等 ,8 的研究结果一致。由于预处理赤霉素浓度、消毒时间、培养温度对马尿泡种子的发芽率影响不显著 ,所以选用平均发芽率最高的水平作为最优水平 ,形成的最优组合为 ,20 ,20 ,20 ,20 ,30 ,400 ,400 ,5

2. 2 不同消毒试剂、消毒时间对马尿泡种子无菌苗繁殖的影响 实验发现,消毒剂不仅影响马尿泡种子的萌发,更加影响种子的污染率。当 $KMnO_4$ 的浓度为 $0.05\% \sim 0.20\%$ 时,马尿泡种子的污染率为 100% 不能形成无菌苗。因此, $KMnO_4$ 不是最适合的消毒试剂 需重新对消毒试剂和消毒时间进行选择。以 3 种常用消毒试剂 $(0.1\%~HgCl_2 \times 20\%~Na-ClO \times 50\%~NaClO)$ 进行完全随机组合试验,测定马尿泡种子发芽率以及成苗率 结果见图 1。

实验结果表明,选用 $0.1\%~\mathrm{HgCl_2}$ 作为消毒试剂对种子的发芽影响较大,随消毒时间的延长种子的发芽率降低,消毒 $5~\mathrm{min}$ 种子的发芽率最低,平均发芽率为 $0.\mathrm{NaClO}$ 对种子的发芽影响较小,种子的

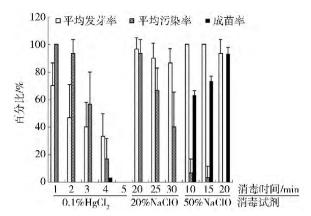
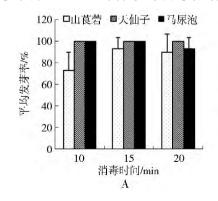
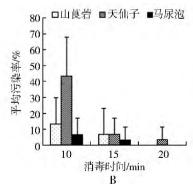




图 1 不同消毒试剂、消毒时间对马尿泡 种子无菌苗繁殖的影响

发芽率基本保持在 85%以上,但是低浓度次氯酸钠 (20% NaClO) 消毒不彻底,大量种子被污染,成苗率为 0。只有高浓度次氯酸钠(50% NaClO) 消毒 20 min 时 种子的发芽率为 93.33%,污染率为 0,成苗率为 93.33%,能够有效获得大量种子无菌苗。经过多次重复试验,此方法获得马尿泡种子无菌苗的成苗率都保持在 90%以上。

2.3 50% NaClO 消毒不同时间对山莨菪、天仙子、马尿泡种子无菌苗繁殖的影响 消毒处理是获取无菌苗的必需条件,但消毒的同时对植物体存在一定的伤害。为了进一步摸清 NaClO 消毒时间对无菌苗的影响 将50% NaClO 按消毒 10、15、20 min 处理进行试验 统计试验结果见图 2。综合考虑,当消毒时间为 20 min 时,山莨菪种子的成苗率为 90%,天仙子的种子成苗率为 83.3%,马尿泡种子的成苗率为 93.3% 都达到了较高水平。但是 3 种植物种子的萌发时间存在差异,天仙子种子的萌发时间最早,在接种后的第 3 天萌发,而且发芽比较整齐。马尿泡次之 种子萌发在接种后的 6~8 d 种子萌发持续时间长。山莨菪种子的萌发时间较晚,接种后的第 6 天开始有种子萌发露白,但大量种子萌发在接种后的第 9~10天。实验中山莨菪和马尿泡种子的



图 2 50 % NaClO 消毒不同时间对山莨菪、天仙子、马尿泡种子无菌苗繁殖的影响 A. 发芽率 B. 污染率 C. 成苗率

3 讨论

• 450 •

- 3.1 以上实验结果表明,马尿泡、山莨菪、天仙子 最适合的消毒剂是 50% NaClO ,最适合的消毒时间 为 20 min。最终建立的 3 种植物种子无菌苗繁殖体 系为: 取 3 种植物种子蒸馏水冲洗 3 次 遗弃漂浮种 子 400 ppm 赤霉素预处理 24 h ,75% 酒精消毒 1 min ,无菌水冲洗 3 次 50% NaClO 消毒 20 min ,无菌 水冲洗 6 次 ,点播在 MS 固体培养基上 ,每瓶 5 粒 , 22 ℃暗培养 种子发芽后转入光照培养箱培养 ,能 够获得3种植物种子无菌苗。
- 3.2 马尿泡、山莨菪、天仙子是重要药用植物资 源。1980年,肖培根等(10)对这几种植物的有效成 分的含量进行了测定,结果表明3种植物体内均含 有生物碱 其中马尿泡体内生物碱的含量最高,达 1.2%~2.8%。随着生物碱合成途径的不断解析, 控制合成途径关键酶基因不断被克隆,利用植物反 应器和转基因技术高效生产生物碱取得了一定的发 展,而这些技术都是以各种植物的无菌苗为材 料(11,12)。

本实验建立了马尿泡、山莨菪、天仙子种子无菌 苗的繁殖体系 获得了生长健壮、长势一致的3种植 物的种子无菌苗,为马尿泡、山莨菪、天仙子通过生 物技术手段探索高效生产生物碱的新途径的研究提 供了材料基础,有效解决了这三种植物受地域、气候 生长条件限制而不能随时获得不同生长阶段材料进 行研究的问题,也有可能为这三种植物的种质资源 保存和利用提供新的繁殖途径。

考 文 献

- [1] 中国科学院西北高原生物研究所. 藏药志[M]. 西宁: 青海人民出版社 ,1991:140.
- [2] 杨冬之. 茄科天仙子族: 结构、分化和系统关系 [D]. 北 京: 中国科学院 2002.
- [3] 张发起 高庆波 邢睿 筹. 青海省三种茄科植物种子微 形态特征[J]. 植物分类与资源学报 2013 35(3):290-
- [4] 王环 潘莉 张晓峰. HPLC 法测定天仙子和马尿泡中3 种托烷类生物碱的含量 [J]. 西北药学杂志,2002,17
- [5] 张晓峰 汪环. 山莨菪植物体内 4 中莨菪烷类生物碱含 量的变化[J]. 西北植物学报 2002 22(3):630-634.
- [6] 肖培根 何丽一 正立为. 莨菪类藏药的研究[J]. 中药 通报 1984 9(1):10-11.
- [7] 黄锋 代先东 胡亚兰 等. 托烷类生物碱的合成研究进 展[J]. 化学试剂 2005 27(3):141-144.
- [8] 李华赐,丁经业.赤霉素对山莨菪与马尿泡种子发芽的 影响[J]. 植物生理学通讯 ,1980 ,30(1):24-25.
- [9] 杨兴彪 ,李海峰 . 三分三种子萌发影响因素分析 [J]. 湖北农业科学 2013 52(17):4142-4144.
- [10] 肖培根,何丽一.一种新的托品类生物碱资源植 物——矮莨菪[J]. 药学通报 ,1980 ,15(11):41.
- [11] 唐克轩 沈乾 付雪晴 等. 植物次生代谢产物生物反 应器研究进展[J]. 中国农业科技导报 ,2014 ,(1):7-
- [12] Zhang L ,Ding RX ,Chai YR ,et al. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures [J]. Proc Natl Acad Sci USA ,2004 ,101 (17): 6786-6791.