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Abstract Based on the model–data comparison at the

eddy-covariance observation sites from CarboEastAsia

datasets, we report the current status of the terrestrial car-

bon cycle modeling in monsoon Asia. In order to assess the

modeling performance and discuss future requirements for

both modeling and observation efforts in Asia, we ran eight

terrestrial biosphere models at 24 sites from 1901 to 2010.

By analyzing the modeled carbon fluxes against the

CarboEastAsia datasets, the strengths and weaknesses of

terrestrial biosphere modeling over Asia were evaluated. In

terms of pattern and magnitude, the carbon fluxes (i.e.,

gross primary productivity, ecosystem respiration, and net

ecosystem exchange) at the temperate and boreal forest

sites were simulated best, whereas the simulation results

from the tropical forest, cropland, and disturbed sites were

poor. The multi-model ensemble mean values showed

lower root mean square errors and higher correlations,

suggesting that composition of multiple terrestrial bio-

sphere models would be preferable for terrestrial carbon

budget assessments in Asia. These results indicate that the
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current model-based estimation of terrestrial carbon budget

has large uncertainties, and future research should further

refine the models to permit re-evaluation of the terrestrial

carbon budget.

Keywords Carbon fluxes � East Asia � Eddy covariance

measurement � Model comparison � Terrestrial biosphere

model

Introduction

Terrestrial ecosystems in monsoon Asia, which account for

*16 % of the global terrestrial net primary productivity

and biomass (Oikawa and Ito 2001), play an important role

in global terrestrial carbon cycles. Large interannual vari-

ations in the terrestrial carbon budget have been reported in

Asian ecosystems by both terrestrial biosphere models (Mu

et al. 2008) and atmospheric inversion studies (Patra et al.

2005). The dynamics of the terrestrial carbon budget are

influenced by various environmental effects such as El

Niño/La Nina (Tian et al. 2003) and Asian monsoons

(Kwon et al. 2010; Hong and Kim 2011).

Terrestrial biosphere models are important tools for

estimating the terrestrial carbon budget and understanding

the causes of spatiotemporal variations. Due to the critical

importance of monsoon Asia in the global carbon budget,

many studies have conducted carbon budget simulation

over Asia. Piao et al. (2009) estimated the terrestrial carbon

budget in China using terrestrial biosphere models, remote

sensing data, and inventory data. Ito (2008) and Sasai et al.

(2011) estimated the terrestrial carbon budget in East Asia

using the Vegetation Integrative SImulator for Trace gases

(VISIT) and Biosphere model integrating Eco-physiologi-

cal And Mechanistic approaches using Satellite data

(BEAMS) models, respectively. Ichii et al. (2010) esti-

mated the terrestrial carbon budget of Japan using nine

terrestrial biosphere models. Piao et al. (2011) estimated

the spatiotemporal patterns of the terrestrial carbon budget

in East Asia using four terrestrial biosphere models.

However, different model simulations yielded significantly

different estimates of terrestrial carbon budgets.

The model-by-model differences have been analyzed

through model intercomparison activities. On the global

scale, the simulated net primary productivity (NPP) differs

greatly among 17 terrestrial biosphere models (Cramer

et al. 1999). Cramer et al. (2001) also reported that six

different dynamic global vegetation models (DGVMs)

produced large discrepancy in the future carbon budget

estimates. Recently, many multi-model analyses have been

conducted at regional to continental scales to characterize

the models’ ability to simulate the terrestrial carbon bud-

get. Schwalm et al. (2010) applied multiple terrestrial

biosphere models to North America and found poor

agreement between the model and the observation. Jung

et al. (2007) conducted a multi model–data comparison

over Europe, and reported a root means square error

(RMSE) of about 30 % in European forest sites. Ichii et al.

(2010) conducted a model–data comparison over Japan, in

which model calibration using the observation decreased

the differences in spatial carbon fluxes.

The previous studies of the model–data synthesis

focusing on Asia were conducted using small numbers of

the observation sites due to the limited data availability.

Recent development of AsiaFlux, however, enables accu-

mulation and provision of the eddy-covariance data from

various ecosystems (http://asiaflux.net). For example, the

CarboEastAsia dataset is a collection of eddy-covariance

measurements covering a wide spatial range from Siberia to

Southeast Asia and from humid coastal areas to semiarid

inland regions (Saigusa et al. 2012; http://www.carboeastasia.

org). This dataset provides a unique opportunity to evaluate

the terrestrial biosphere models over Asia.

The purposes of this study are to evaluate the terrestrial

biosphere models using the CarboEastAsia dataset and to

summarize the current status and future perspectives on

terrestrial biosphere modeling in Asia. We used eight ter-

restrial biosphere models for 24 eddy-covariance mea-

surement sites and evaluated the models’ outputs

comparing against the CarboEastAsia dataset. Then, we

described the current issues inherent in the applications of
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terrestrial biosphere models to Asia, its future perspectives,

and the contributions of this site-level model–data syn-

thesis to the CarboEastAsia program.

Materials and methods

We used the CarboEastAsia dataset (Saigusa et al. 2012)

collected from 24 sites in Asia that provided carbon flux

data [i.e., gross primary productivity (GPP), ecosystem

respiration (RE), and net ecosystem exchange (NEE)] as

well as meteorological data (Table S1). The carbon fluxes

by eddy-covariance observations were processed, gap-filled

and flux-partitioned under the CarboEastAsia program

(Saigusa et al. 2012). The 24 sites used in this study dealt

with a wide gradient of temperature and precipitation

covering from tropical to boreal forest ecosystems and

humid to semi-arid ecosystems. They also included several

sites affected by human management (e.g., cropland and

rice paddy). The details of the dataset were described in

Saigusa et al. (2012).

Eight terrestrial biosphere models, which fell into the

categories of diagnostic, prognostic, and dynamic models,

were used in this study. As the diagnostic models, we used

the BEAMS (Sasai et al. 2005) and Carnegie-CASA (Field

et al. 1995) models that utilize satellite-based vegetation

parameters such as leaf area index (LAI). Biome-BGC

(Thornton et al. 2002), CLM3.5-CN (Oleson et al. 2008),

PnET-CN (Aber et al. 1997), and VISIT (Ito 2008) models

are prognostic models and use climate data only as time-

variable inputs with constant vegetation type. As dynamic

models, LPJ-DGVM (Sitch et al. 2003; Gerten et al. 2004)

and MOSES2/TRIFFID (Cox 2001) models were used.

Although these dynamic models calculate the temporal

changes in the distribution of vegetation types in addition

to carbon cycles, the vegetation type was fixed using site

information in this study. Therefore, no competition among

vegetation and successional change was considered. The

details of the models are given in Table S2.

The model inputs consist of time-variable data (e.g.,

climate and satellite data) and static data (e.g., location,

vegetation type, and soil information). Climate data at each

site were generated from 1901 to 2010 based on the global

climate data with adjustments based on the meteorological

observations at each site. For example, air temperature

data were based on CRU TS3.1 data (Mitchell and Jones

2005), NCEP reanalysis data (Kalnay et al. 1996), and site

observations. The daily and 6-hourly variations of air

temperature are based on NCEP reanalysis data, and the

monthly averages are adjusted to fit the CRU TS3.1 data by

adding offset. Since NCEP reanalysis data are not available

for the period of 1901–1947, the reanalysis data for 1948

were used instead. Next, the derived air temperature

time-series were adjusted by the site-observed air temper-

ature on monthly time scales based on linear regression.

Similarly, precipitation and solar radiation data were gen-

erated by merging NCEP reanalysis data, CRU TS3.1

precipitation data (Mitchell and Jones 2005), ISCCP-FD

solar radiation data (Zhang et al. 2004), and site observa-

tions. For other climate inputs such as longwave radiation,

wind speed, and relative humidity, NCEP reanalysis data

were used. Satellite-based time-series data were taken from

Terra/MODIS products. The vegetation index (MOD13Q1)

(Huete et al. 2002) and LAI/FPAR (MOD15A2) (Myneni

et al. 2002) products were used after screening of the data

quality check. Because Terra/MODIS data became avail-

able from 2000, the data prior to 2000 were used for the

period from 1901 to 1999. Static data were provided from

the site information, if available. Otherwise, global data

(Harmonized World Soil Database for soil texture and

depth; FAO/IIASA/ISRIC/ISSCAS/JRC 2012) were used.

Generally, a consistent protocol was applied to all

models. The model spin-up was first performed and then

the models were executed using time-variable inputs from

1901 to 2010. For most of the models, the spin-up was

conducted using the 1901–1930 climate data repeatedly

until the soil carbon reached an equilibrium. For the

models that are not intended to use multiple years of data

for spin-up (BEAMS; used 1901 climate data repeatedly

for the spin-up) or adopt different spin-up strategy (VISIT;

used 1901–2010 climate data repeatedly for the spin-up),

other pertinent approaches for the spin-up were used. Due

to different temporal scales (i.e., from hourly to monthly)

of the model outputs, we have chosen a monthly scale to

analyze the model outputs compared to the observations.

The Taylor diagram (Taylor 2001) is known as a useful

tool in the studies of model–data intercomparison for its

effective visual framework (e.g., Schwalm 2010). We

presented the results of model performance by plotting the

standard deviation (r) of the model outputs, RMSE, and

correlation coefficient (R) together in one plot. Model

performance is indicated by proximity to the benchmark.

For the carbon fluxes (i.e., GPP, RE, and NEE), monthly

averages for each site were used for the Taylor diagrams.

The observed monthly carbon fluxes were normalized by

the observed r and this was used as a benchmark. Both the

r of the modeled monthly carbon fluxes and the RMSE

between the observed and the modeled were also normal-

ized by the observed r.

We performed the following two analyses. First, to

determine how well the current terrestrial biosphere models

simulate carbon fluxes at each site and identify the sites

showing an obvious disparity between the model simula-

tion and the observations, the site-by-site differences in the

model performance were evaluated using the differences

between the model ensemble mean and the observation at
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each site. Second, to assess the performance and charac-

teristic of each model, the model-by-model differences in

model performance were estimated using the modeled and

observed carbon fluxes across all sites. In addition to

Taylor diagrams, the mean monthly variations of the

modeled and observed GPP, RE, and NEE were shown in

Figs. S2, S3, and S4, respectively.

Results

Site-by-site differences in model performance

The terrestrial biosphere models underestimate the r of

monthly carbon fluxes at most sites (Fig. 1), and the model

simulations of GPP and RE are better than those of NEE

(Fig. 1). For example, the models show smaller normalized

r of the monthly GPP and RE variations at many sites (i.e.,

normalized r\ 0.8 at 12 and 10 sites for GPP and RE,

respectively) (Fig. 1a, b). The majority of the sites exhibit

high R (i.e., R [ 0.95 at 13 and 12 sites for GPP and RE,

respectively) and low normalized RMSE values (i.e., RMSE

\0.5r at 13 and 12 sites for GPP and RE, respectively)

(Fig. 1a, b). The site-by-site model performance for NEE

shows that the model simulations of NEE is inferior to those

of GPP and RE. The R values of NEE is lower than those of

GPP and RE, and no sites exhibit R [ 0.95 (Fig. 1c). The

normalized RMSE values of NEE is also greater than those

of GPP and RE with only two sites (MMF and QHB)

exhibiting RMSE \0.5r. The lower R and higher normal-

ized RMSE values in NEE suggest that NEE is more dif-

ficult to predict than GPP and RE because NEE represents a

delicate difference of two large quantities (GPP and RE),

and uncertainties in simulated GPP and RE are propagated

into the NEE estimation. In addition, the models underes-

timate normalized r of NEE at most sites (22 sites).

The models performed poorly at the following sites

(Fig. 1; Table 1): tropical forests (BNS, MKL, PDF, and

SKR; the mean values of normalized r, normalized RMSE

and R over 4 sites are 0.38, 0.92 and 0.46 for GPP, and
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Fig. 1 Taylor diagram of the

model performances for each

site: a GPP, b RE, and c NEE.

Filled black circles represent

the mean model ensemble for

each site. Benchmarks (shown

as OBS) correspond to the

observed monthly carbon fluxes

normalized by the standard

deviation of observed monthly

carbon fluxes. The standard

deviations and RMSEs are

normalized by the standard

deviations of the observed

monthly data. The sites not

shown in the figure have the

following statistics: a TUR

(normalized r = 3.0,

normalized RMSE = 2.1,

R = 0.98) and PDF (normalized

r = 0.53, normalized

RMSE = 1.3, R = -0.42),

b TUR (normalized r = 4.5,

normalized RMSE = 3.5,

R = 0.95), HFK (normalized

r = 2.1, normalized

RMSE = 1.2, R = 0.93) and

PDF (normalized r = 0.51,

normalized RMSE = 1.4,

R = -0.58), and c TSE

(normalized r = 1.6,

normalized RMSE = 2.5,

R = -0.81) and HFK

(normalized r = 0.25,

normalized RMSE = 1.1,

R = -0.23)

16 J For Res (2013) 18:13–20

123



0.18, 0.92 and 0.49 for NEE); cropland (HFK, MSE, and

YCN; the respective mean values of normalized r, nor-

malized RMSE and R are 0.62, 0.66 and 0.79 for GPP, and

0.18, 0.99 and 0.29 for NEE); severely disturbed sites (PDF

with human-induced drain and TSE with clear-cut); and

sites with anomalous decreases in GPP in the middle of the

growing season due to light or water limitations (GDK,

QYZ, and TKC).

Table 1 Statistics (normalized r, normalized RMSE, and R) of model–data comparison in each ecosystem type

GPP RE NEE

r RMSE R r RMSE R r RMSE R

EBF 0.38 0.93 0.46 0.34 0.93 0.45 0.18 0.92 0.49

DBF 0.83 0.28 0.97 1.10 0.34 0.94 0.54 0.61 0.87

ENF 0.82 0.33 0.96 0.92 0.42 0.93 0.68 0.69 0.70

DNF 1.16 0.67 0.96 1.41 0.88 0.97 0.85 0.94 0.62

MF 1.04 0.37 0.96 1.22 0.54 0.96 0.78 0.55 0.83

GL 0.75 0.26 0.99 0.79 0.28 0.98 0.60 0.52 0.91

CL 0.62 0.66 0.79 1.32 0.73 0.90 0.18 0.99 0.29

Each number is the mean of each ecosystem type

DNF deciduous coniferous forest, ENF evergreen needleleaf forest, MF mixed forest, DBF deciduous broadleaf forest, EBF evergreen broadleaf

forest, GL grassland, CL cropland
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Fig. 2 Taylor diagram of the

mean model performances

across all sites: a GPP, b RE,

and c NEE. Filled black and red
circles correspond to individual

models and ensemble mean

performances across all sites,

respectively. Benchmarks

(shown as OBS) correspond to

the observed monthly carbon

fluxes normalized by the

observed standard deviation.

The standard deviations and

RMSEs are normalized by the

standard deviations of the

observed monthly data (color

figure online)
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Model-by-model differences in model performance

The analysis clearly indicates that the model-by-model

differences in carbon fluxes estimates are mainly due to the

differences in r (Fig. 2). The seven model outputs exhibit

generally similar R (0.6–0.9) and normalized RMSE

(0.6–0.8) values, whereas they show different normalized r
(0.5–1.2) values for both GPP and RE (Fig. 2a, b). The

CLM3.5-CN model had higher values of normalized r
(*1.2 of normalized r) for both GPP and RE compared to

the those of normalized r from the other models (Fig. 2a,

b). As shown in the site-by-site evaluation above, NEE

exhibits inferior statistics compared to those of GPP and

RE in the model-by-model evaluation. The model-by-

model differences are explained by all three statistical

measures: R (-0.05 to 0.6), normalized r (0.4–0.9), and

normalized RMSE (0.8–1.2) (Fig. 2c). The use of an

ensemble mean value results in the best estimates of the

observed findings among all single models for GPP and RE

except for GPP by VISIT model, which shows the smallest

normalized RMSE and highest R values.

Discussion and future perspectives

According to the analysis of the site-by-site differences, the

terrestrial biosphere models had a poor predictability at

tropical forest sites, cropland sites, disturbed sites, and the

sites showing an anomalous decrease in GPP. First, tropical

forest sites generally have the lowest values of R and

normalized r, and the highest values of normalized RMSE.

Despite the recent attempts to apply various models to

tropical forest ecosystems to analyze the controlling factors

of the seasonal carbon cycles (e.g., Ichii et al. 2007;

Verbeeck et al. 2011), an improvement of the modeling

application to Asian tropical forests remains an important

research need. Second, the simulated carbon cycles of

cropland sites were poor, because some models that have

cropland as an ecosystem type used the default settings for

cropland phenology (when available), and others used

grassland parameterization instead. Third, the sites with

strong disturbance histories (i.e., TSE with clear-cut and

PDF with human-induced drain) had poor model predic-

tions because no model can yet account for these effects.

Fourth, the observed anomalous decrease in GPP in the

middle of the growing season was primarily caused by the

intensive and extensive rainy season during the monsoons

(at GDK and TKC sites) and a severe dry season (at QYZ

site). These results indicate that the terrestrial biosphere

models need to be improved in terms of model parame-

terization for the interplay between carbon and water

dynamics for ecosystems in monsoon Asia.

The multi-model evaluation using the 24 CarboEastAsia

sites demonstrated that the eight terrestrial biosphere

models tend to underestimate the standard deviations of

monthly variations (i.e., seasonal amplitude) in GPP, RE,

and NEE. As a result, the underestimation of standard

deviations can be propagated into errors and uncertainties

in the estimation of model-based carbon budget especially

for their seasonal maximum, at regional to continental

scales. These site-level problems have commonly been

reported in other model–observation comparison studies.

For example, the tendency of the model underestimation

compared to the observation has been reported in studies

from North America (Schwalm 2010), Europe (Jung et al.

2007), and Japan (Ichii et al. 2010). Large discrepancies

from the model-by-model comparisons have also been

reported from North America (Schwalm 2010) and Japan

(Ichii et al. 2010). Thus, further model refinements are

necessary to reduce potential uncertainties in continental-

scale carbon budget estimation using terrestrial biosphere

models.

To further improve the terrestrial biosphere models, (1)

treatment of the specific land covers (e.g., rice paddy, Li

et al. 2004, and larch forests, Ueyama et al. 2010) unique to

Asia, must be improved, and (2) natural disturbances such

as monsoons (e.g., Kwon et al. 2010; Hong and Kim 2011),

typhoons (Ito 2010), and human-induced disturbances (e.g.,

Ueyama et al. 2011) must be incorporated into the models.

Such improvements may require a new framework in

ecosystem modeling (e.g., resilience and thermodynamic

approaches) to deal with self-organizing possibilities of

ecosystems with disturbances and to bridge ecological and

societal systems (e.g., Jorgensen et al. 2007).

Use of more model constraints and criteria of model

evaluation is also important. For example, more observed

parameters such as biomass and soil carbon (e.g.,

Richardson et al. 2010), and soil respiration (e.g., Liang

et al. 2010; Tamai 2010) should be used in future model

evaluation. In addition, other model evaluation criteria

should be applied such as the use of the frequency domain

(e.g., Mahecha et al. 2010; Hong and Kim 2011) and

underlying interactions in ecosystem processes in terms of

process network (Ruddel and Kumar 2009). Application of

model–data integration schemes such as parameter opti-

mization and assimilation is also important (e.g., Ichii et al.

2009; Ju et al. 2010) to eliminate the freedom of parameter

tuning by hand. Model testing with long-term observations,

including anomalous climate years, is required to test the

sensitivities of the models to climate anomalies. Examples

of climate anomalies in recent years include the widespread

negative anomalies in temperature and radiation in the

summer of 2003 (e.g., Saigusa et al. 2010), severe freezing

in China in the winter of 2008 (e.g., Zhou et al. 2011), and

18 J For Res (2013) 18:13–20
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the heatwave in Russia and Asia in the summer of 2010

(NOAA National Climatic Data Center 2010).

Further studies beyond model–data comparison are also

required. This study demonstrated the large differences

among the simulated carbon budgets; however, one of the

major purposes of terrestrial biosphere modeling is to

estimate more accurate carbon budget and to reduce

uncertainties. Toward this objective, a more detailed model

intercomparison focusing on specific processes is required.

For example, Adams et al. (2004) compared the photo-

synthesis routine included in 18 terrestrial biosphere

models, and evaluated their differences in sensitivity to

climate variables. In addition, current terrestrial biosphere

models have large uncertainties in the parameter tuning

processes that are usually conducted manually. To reduce

uncertainties caused by human factors, we need to set

objective standards for the model evaluations such as the

use of a common model parameter across models, the

application of model parameter optimization routines, and

the removal of outlying models. We also need to go beyond

model intercomparison and identify the weakness of each

model and develop better submodels for models as needed.

The next step is to envision and develop an integrated next

generation model based on the careful assessment of

individual terrestrial biosphere models.
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