第 27 卷, 第 5 期 2 0 1 0 年 9 月

: 谱 实 验 室

至 Vol. 27, No. 5
Laboratory September, 2010

Chinese Journal of Spectroscopy Laboratory

青海栽培藏木香中微量元素含量的测定

董琦 a 迟晓峰 a,b 马世震 a 胡风祖 $^{\textcircled{1}a}$ a(中国科学院西北高原生物研究所 西宁市西关大街59号 810008) b(中国科学院研究生院 北京市 100049)

摘 要 利用空气-乙炔火焰原子吸收光谱法测定藏木香中Cu、Zn、Fe、Mn、Ca、K、Mg 和Na 8 种微量元素的含量。该方法的回收率在96.23%—104.30%之间,相对标准偏差小于1.92%,具有较好的准确度和精密度。试验发现藏木香中微量元素含量丰富,这为藏木香的合理药用及进一步的开发利用提供了可靠依据。

关键词 火焰原子吸收光谱法;藏木香;微量元素

中图分类号: 0657.31 文献标识码: B 文章编号: 1004-8138(2010) 05-1875-03

1 引言

藏木香是菊科植物总状土木香(Inula racemosa Hook.f)的干燥根,分布于新疆、四川、西藏、青海等地区[1]。藏木香具有行气镇痛、健脾消食、温中和胃、胸腔胀痛、食积不消、止痛安胎等作用[2]。微量元素与疾病、中药药效及药性的关系长期以来都受到人们的关注,对其微量元素的分析研究,在预防、诊断疾病和延长人的寿命等方面都有十分重要的意义[3.4]。有关中草药中微量元素的测定及比较也已有了不少的报道[5-7],但目前对藏木香中微量元素的研究尚未见报道,鉴于此,本实验采用空气-乙炔火焰原子吸收光谱法测定藏木香中8种微量元素,效果良好,为合理利用该资源提供依据。

2 实验部分

2.1 实验仪器

220-FS 原子吸收光谱仪(美国 Varian 公司); M b-1 电热板(北京科伟永兴仪器有限公司); SX-4-10 箱式电阻炉(北京科伟永兴仪器有限公司); AG135 电子天平[梅特勒-托利多仪器(上海)有限公司]; M olelement 1810a 元素型超纯水机(上海摩勒生物科技有限公司)。

2.2 试剂与标准溶液

硝酸、硫酸、盐酸(优级纯,甘肃白银西区银环化学试剂厂);过氧化氢(优级纯,北京化学试剂公司); $Cu \times Zn \times Fe \times Mn \times Ca \times K \times Mg$ 和Na的1000 $\mu g / mL$ 标准溶液(北京国家标准物质研究中心)。实验用水为去离子水。

① 联系人, 电话: (0971) 6132750; E-mail: qdong@nwipb.ac.cn

作者简介: 董琦(1980一), 女, 吉林省通化市人, 工程师, 硕士, 主要从事分析化学工作。

收稿日期9201-05 接受日期2010-01-29 ournal Electronic Publishing House. All rights reserved. http://www.c

1876 光谱实验室 第 27 卷

2.3 样品处理

栽培藏木香由本所与青海大通宝库林场合作试验基地提供。样品经阴干,粉碎后,过80目筛。准确称取1.000g 藏木香粉末于蒸发皿中,在250℃的电热板上加热到完全炭化及烟冒尽,移入马弗炉内600℃焙烧灰化5h,取出蒸发皿冷却后用少量水润湿灰粉,用6mol/L的HNO₃溶液溶解残渣,以快速滤纸过滤到100mL容量瓶中,用去离子水定容至刻度,摇匀。

2.4 样品测定

在仪器最佳工作条件下,制作各元素的校准曲线,对各个样品进行测定。每个试样重复测定5次。

3 结果分析

3.1 仪器工作条件

仪器工作条件见表1。

V - V - I - V						
二主	波长	灯电流	光谱通带	空气流量	乙炔流量	
元素	(nm)	(m A)	(nm)	(L/ min)	(L/min)	
Cu	324. 8	4. 0	0. 5	13. 5	2	
Zn	213.9	8. 0	1.0	13.5	2	
Fe	248. 3	7. 0	0. 2	13.5	2	
Мn	279. 5	8. 0	0. 2	13. 5	2	
Са	422. 7	12. 0	0.5	13. 5	2	
K	766. 5	5. 0	1.0	13. 5	2	
М д	202. 5	4. 0	1.0	13.5	2	
Na	589. 0	10.0	0.5	13. 5	2	

表 1 仪器工作条件

3.2 校准曲线的绘制

将各元素的标准溶液系列导入仪器进行测定,制作各元素的校准曲线,结果见表2。由表2看出,在本工作范围内,各元素线性关系良好。

元素	标准溶液浓度(µg/mL)					回归方程	相关系数
Cu	0.02	0.05	0. 20	0.40	0.60	A = 0.1305C + 0.0002	0. 9997
Zn	0.04	0.06	0.12	0. 24	0.48	A = 0.7756C + 0.0002	0. 9997
Fe	0.50	1.00	2.00	3.00	4.00	A = 0.068C + 0.0059	0. 9999
Мn	0.05	0.10	0.20	0.40	0.60	A = 0.1532C + 0.0045	0. 9994
Са	5	10	20	30	50	A = 0.0153C + 0.0507	0. 9995
K	10	20	30	40	50	A = 0.0057C - 0.0007	0. 9994
Мд	2	4	10	20	30	A = 0.0320C + 0.0496	0. 9991
Na	0.05	0. 10	0. 20	0.40	0.50	A = 0.8460C + 0.0440	0. 9994

表 2 元素标准系列、回归方程及相关系数

3.3 精密度及回收率实验

平行测定 5 份样品, 考察方法的精密度, 各元素的相对标准偏差在 0.81%—1.92% 之间, 在样品中加入标样, 按照实验方法进行标准加标回收实验, 平均回收率介于 96.23%—104.30% 之间, 结果见表 3、4。结果表明该法具有良好的准确度和精密度。

3.4 检测结果

按仪器工作条件对样品进行测定,测定钙和镁时,加入氯化锶可消除磷酸盐和硅酸盐的干扰;测定锰时,加入磷酸型氢铵溶液可消除铝的干扰;铁、锰邻近线较多, 因此选择光谱通带为0.22m; www.

测定钾、钠时,加入氯化铯消除电离干扰。检测结果见表4。

表 3	回收率实验
-----	-------

元素	样品原含量	加标量	加标测定值	回收率
	(mg/L)	(mg/L)	(mg/L)	(%)
Cu	0. 1378	0. 10	0. 2369	99. 10
Zn	0.0616	0.06	0. 1228	102.00
Fe	2. 2201	1. 00	3. 2002	98. 01
Mn	0. 0819	0. 10	0. 1829	101.00
Ca	37. 2654	20	56. 5117	96. 23
K	44. 8675	30	74. 1242	97. 52
М д	26. 0249	20	45. 7715	98. 73
Na	0. 2660	0. 20	0. 4746	104. 30

表 4 藏木香药材中微量元素的含量

元素	Cu	Zn	Fe	Мn	Са	K	М д	Na
含量平均值(mg/kg)	13. 75	6. 15	221. 57	8. 17	3719. 1	4477.8	2597. 3	265. 44
RSD(n= 5, %)	1. 92	1.03	1. 36	1. 21	0. 99	1.01	1.38	0.81

4 结论

采用干法处理样品,以空气-乙炔火焰原子吸收光谱法测定了样品中8种微量元素的含量。结果发现, K、Ca、Mg 含量丰富, Na、Fe 含量次之, Cu、Zn、Mn 含量较少。本实验所建立的空气-乙炔火焰原子吸收光谱法是测定藏木香药材中8种微量元素含量的一种较好的方法。所用仪器先进,方法灵敏准确,简便快速,具有重要的实际应用价值。实验证明,藏木香中含有多种对人体有益的微量元素,这为进一步开发和利用这一资源提供了精确、可靠的原始数据。

参考文献

- [1] 中国科学院中国植物志编委会. 中国植物志(第七十五巻)[M]. 北京: 科学出版社, 1979. 254.
- [2] 中国科学院西北高原生物研究所. 藏药志[M]. 西宁: 青海人民出版社, 1991. 261.
- [3] 王三根. 微量元素与健康[M]. 上海: 上海科学普及出版社, 2004.
- [4] 张玉芝. 微量元素与人体健康[J]. 微量元素与健康研究, 2004, 21(3): 56.
- [5] 张俊清, 刘明生, 符乃光等. 中药材微量元素及重金属研究的意义与方法[J]. 中国野生植物资源, 2002, 21(3): 48-49.
- [6] 姜凤、辛士刚, 王莹等. 中药仙鹤草中微量元素的测定[J]. 光谱实验室, 2006, 23(2): 380-382.
- [7] 李萌, 杨光, 关永军. 微波消解/ICP-AES 法测定中药材益母草和厚朴中的微量元素[J]. 广东微量元素科学, 2006, 13(9): 37—41.

Determination of Trace Elements Contents in Cultivated Inula Racemosa Hook. f

DONG Qi^a CHI Xiao-Feng^{a, b} MA Shi-Zhen^a HU Feng-Zu^a
a(Northwest Institute of Plate au Biology of Chinese A cademy of Sciences, X ining 810008, P. R. China)
b(Graduate School of Chinese A cademy of Sciences, Beijing 100049, P. R. China)

Abstract Eight trace elements such as Cu, Zn, Fe, Mn, Ca, K, Mg and Na in cultivated *Inula racemosa* Hook. f were determined by flame atomic absorption spectrometry with air-acetylene flame. The recovery was in the range of 96. 23%—104. 30% and the relative standard deviation was less than 1. 92%. The experiment proved that there were considerable differences of the contents of the eight trace elements in cultivated *Inula racemosa* Hook. f. The data provides an accurate and credible evidence for reasonable medicinal use of cultivated *Inula racemosa* Hook. f.

Key words Flame Atomic Absorption Spectrometry; Cultivated Inula Racemosa Hook, f; © 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.