水热制备葡萄糖炭 - 涤纶复合纤维及其吸附性能研究

孟 $a^{1,2}$,白 $b^{1,2}$,王洪伦³,索有瑞³

(1 长安大学环境科学与工程学院,西安 710054;2 长安大学旱区地下水文与生态效应教育部重点实验室,西安 710054;
 3 中国科学院西北高原生物研究所,西宁 810001)

摘要 葡萄糖纳米炭微球具有较强的吸附能力,但存在不易回收的缺点。以丙烯酸作为交联剂,利用涤纶和葡萄糖溶液经 一步水热炭化制备葡萄糖炭-涤纶复合纤维(GC@PFs)。采用 SEM、XRD、FTIR 分别对该复合纤维的形貌、物化结构进行了表征。 结果表明,大量葡萄糖炭微球生成并均匀分散在涤纶纤维表面,其粒径为 0.5~1.5 μm。采用 Boehm 滴定法测得该复合材料表面酸 性基团总量为 1.95 mmol・g⁻¹,利用 Zeta 电位测得其等电点在 3.6 附近。该材料表现出优异的吸附性能,在 20 ℃、pH=6.3 条件 下,对 Pb²⁺ 的最大理论吸附量可达 20.2 mg/g,吸附过程符合准二级动力学,等温吸附过程更符合 Freundlich 吸附模型。

关键词 葡萄糖炭微球 水热炭化 涤纶纤维 吸附

中图分类号:TQ424 文献标识码:A DOI:10.11896/j.issn 1005-023X 2018 06 006

Hydrothermal Preparation of Composite Glucose Carbon@Polyester Fiber and Its Adsorption Properties

MENG Lu^{1,2}, BAI Bo^{1,2}, WANG Honglun³, SUO Yourui³

 (1 School of Environmental Science and Engineering, Chang'an University, Xi'an 710054; 2 Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Xi'an 710054;
 3 Northwest Plateau Institutes of Biology, Chinese Academy of Sciences, Xining 810001)

Abstract Glucose carbon microspheres have good adsorption capacity, but it is difficult to be reclaimed in the application. To resolve this problem, a novel composite polyester fiber with carbon microspheres was prepared by one-step hydrothermal carbonization using polyester fiber and glucose as raw materials, acrylic acid as cross-linking agent. The morphology and physicochemical structure of the composite fiber structure were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR), respectively. The results showed that a large number of glucose carbon microspheres were dispersed on the surface of polyester fiber uniformly with the particle size of $0.5-1.5 \ \mu m$. Boehm titration result showed the total amount of surface acidic groups of GC@PFs were 1.95 mmol $\cdot g^{-1}$, and the isoelectric point (pH_{pzc}), measured by Zeta potential, was about 3.6. Under the condition of 20 °C, pH=6.3, the maximum theoretical adsorption capacity of GC@PFs to Pb²⁺ was 20.2 mg/g. The adsorption process could be well described by pseudo-second-order model and Freundlich adsorption model.

Key words glucose carbon microspheres, hydrothermal carbonization, polyester fibers, adsorption

0 引言

近年来,具有特定孔结构或表面官能团的新型炭材料的 规模化生产技术呈现出快速发展的趋势^[1-2]。葡萄糖纳米炭 微球是众多新型炭材料研究领域中的一个热点。其主要原 因在于葡萄糖纳米炭微球具有孔隙率高、比表面积大、理化 性质稳定以及热稳定性好等优点。葡萄糖纳米炭微球典型 的合成路线是水热制备,例如,Liu等^[3]用葡萄糖和商业活性 炭制备出碳材料,表面的纳米炭微球富含含氧官能团,且分 散性良好;Mi等^[4]以葡萄糖水溶液为原料,在 500 ℃和12 h 的条件下利用水热反应成功合成了形状规则、产率高、粒度 分布窄的微球。葡萄糖纳米炭微球可广泛应用于吸附分离、 催化剂载体、燃料电池等领域^[5-7]。然而,研究证实,作为吸 附剂用于废水处理的葡萄糖炭微球多为粉末或颗粒状,存在 粒径小、易团聚、分离困难、堵塞设备、成本高等问题。因此, 在保持葡萄糖纳米炭微球的原有优点的基础上,进一步获得 易于分离回收的纳米碳复合材料对其工业化应用具有重要 意义。

涤纶是聚酯纤维的商品名,它是以精对苯二甲酸(PTA) 或对苯二甲酸二甲酯(DMT)和乙二醇(MEG)为原料,经酯 化或酯交换和缩聚反应制得的成纤高聚物——聚对苯二甲 酸乙二醇酯(PET)经纺丝和后处理制成的纤维。涤纶材料 广泛地应用于制造衣着、建筑内饰、交通工具内装饰等工业 中。涤纶产量巨大,例如在 2010 年我国涤纶产量已达到 2 500多万 t,占世界市场份额约为 70%^[8]。然而,目前废弃 涤纶产品大多以废弃物加工回收,或者直接作垃圾掩埋或焚

基金项目:国家自然科学基金(21176031);中央高校基本科研项目(591310829172201;310829172202;310829175001; 310829165027)

孟露:女,1994年生,硕士研究生,主要研究方向为新型功能材料 E-mail:meng8212@163.com 白波:通信作者,男,1972年生, 教授,博士研究生导师,主要研究方向为纳米复合材料 E-mail:baibochina@163.com 烧处理,综合利用率低且对环境造成污染。因而开展废弃涤 纶资源化利用具有重大的社会意义和应用价值。近年来,将 聚酯纤维应用于废水处理得到广泛关注,例如,蒲亚宁等^[9] 在聚酯纤维上接枝丙烯酰胺用于吸附污水中的铜离子,董静 等^[10]将 MgFe₂O₄ 粒子负载到涤纶表面处理印染废水,均具 有很好的处理效果。

本工作以丙烯酸为交联剂,将涤纶线置入葡萄糖溶液 中,水热炭化制备出负载有炭微球的涤纶复合纤维。采用 SEM、XRD、FTIR 分别对葡萄糖炭-涤纶复合纤维(GC@ PFs)的形貌、物化结构进行了表征。采用静态吸附法考察了 该复合材料对 Pb²⁺的吸附能力,并通过实验数据拟合得出吸 附等温模型。葡萄糖炭-涤纶复合纤维的形成既保留了葡萄 糖纳米炭微球的优异吸附性能,又整合了涤纶的优异力学性 能,解决了葡萄糖纳米炭微球颗粒小、不易回收的问题。

1 实验

1.1 原料与制备仪器

原料:涤纶线;丙烯酸、无水乙醇、葡萄糖均为分析纯,西 安化学试剂厂;实验用水为蒸馏水。主要实验仪器:AL204 电子天平,梅特勒-托利多(上海)有限公司;SB1200 超声波清 洗机,宁波新芝生物科技股份有限公司;101-0AB型电热鼓 风干燥箱,天津市泰斯特仪器有限公司;高温高压反应釜。

1.2 材料的制备与表征

称量 5.94 g 葡萄糖加入 30 mL 蒸馏水中,配制 1.0 mol/ L 的葡萄糖水溶液。将 0.9 g 涤纶线在丙烯酸浸泡 5 min 后 分别放入葡萄糖水溶液中,超声波振动 20 min。产物置于 50 mL 密封高压反应釜中 180 ℃反应 4.5 h 后,自然冷却至室温, 用无水乙醇和去离子水分别洗涤三次,60 ℃整夜烘干备用。

SEM 图谱采用 Philips. XL-30 扫描电子显微镜测试; XRD 测试在 X'Pert Pro X 射线粉末衍射仪上进行,Cu Kα射线,电压为 40 kV,电流为 40 mA; FTIR 测试在 Bio-Rad FTSl35 型傅里叶变换红外光谱仪上进行,采用 KBr 压片法, 扫描范围为 400~4 000 cm⁻¹;Zeta 电位使用 Zetasizer Nano ZS ZEN3600 测试。

1.3 表面酸量的测定

采用 Boehm 滴定法,分别称取 0.1 g 样品放入四个 250 mL 磨口锥形瓶中,依次加入 50 mL 浓度为 0.1 mol/L 的 $NaHCO_3$ 、 Na_2CO_3 、NaOH 溶液,振荡 1 h 后,在 25 ℃下静置 48 h。收集所有滤液,以甲基橙为终点指示剂,用 0.1 mol/L 的 HCl标准溶液滴定滤液中过量的碱液直至滴定终点。

1.4 吸附实验

利用原子吸收光度法,采用 Varian-SpectrAA-220FS 原 子吸收光谱仪进行吸附实验。

铅的标准曲线:用铅离子标准储备液(1 000 μ g/mL)配 制浓度梯度为 0 mg/L、1 mg/L、2 mg/L、4 mg/L、6 mg/L 的 铅溶液,测定其标准曲线。其中,工作波长为 217.0 nm,灯电 流为 10.0 mA,空气流量为 13.50 L/min,乙炔气流量为 2.00 L/min。线性回归方程为A = 0.011 4c + 0.000 3,相关系数为 $R^2 = 0.999 6$ 。

吸附动力学实验:分别配制 30 mL 浓度为 5 mg/L、10

 $mg/L_{20} mg/L_{30} mg/L$ 的 PbCl₂ 溶液(pH=6.3),并分别 加入 0.1 g 样品。振荡吸附,间隔定时取样测定。直至前后 测定两次吸光度值不变,吸附达到平衡。

吸附等温实验:在 10 \mathbb{C} 、20 \mathbb{C} 、30 \mathbb{C} 下,分别配制 30 mL浓度为 20 mg/L、30 mg/L、40 mg/L、50 mg/L、60 mg/L 的 PbCl₂ 溶液(pH=6.3),并分别加入 0.5 g 样品。用保鲜膜 封住瓶口,防止溶液蒸发,恒温振荡 24 h 后,离心,取上清液 测定。

根据吸附值变化计算吸附量 (Q_{e}) 。

$$Q_{e} = \frac{(C_{0} - C_{e}) \times V}{m} \tag{1}$$

式中: C_0 和 C_e 分别表示 PbCl₂ 溶液的初始浓度(mg/L)和达 到吸附平衡时的浓度(mg/L),V 表示 PbCl₂ 的体积(mL),m为投入样品的质量(g)。

2 结果与讨论

2.1 葡萄糖炭-涤纶复合纤维的形成

葡萄糖炭-涤纶复合纤维(GC@PFs)的形成过程如图 1 所示。丙烯酸是一种不饱和羧酸,由乙烯基(-CH=CH₂)和 羧基(-COOH)构成。涤纶线在丙烯酸中浸泡时,涤纶分子 上的端醇羟基会与丙烯酸分子中的羧基反应形成氢键,从而 使丙烯酸连接到涤纶纤维上。水热过程中,葡萄糖分子经过 异构化分子间脱水和分解生成 5-HMF、糠醛类、低聚糖和一 些小分子的可溶性单体,高温使单体内部脱水、羟醛缩合,再 经深度脱水聚合等一系列过程实现 C=C和 C=O 键的生 成,达到一定的饱和临界浓度时,会形成表面具有均匀丰富 的活性含氧官能团的碳核基元^[11-13],能够连接单糖分子及糠 醛类化合物,并通过氢键等作用与涤纶纤维及丙烯酸相连 接。碳核在溶液中继续以 Lamer 的"成核扩散控制"模型生 长直至形成炭微球,最终生成表面负载有炭微球的涤纶复合 纤维。

2.2 葡萄糖炭-涤纶复合纤维的形貌、物相及化学结构

图 2(a)、(b)为涤纶直接水热炭化后的 SEM 图,图 2(c)、 (d)为葡萄糖溶液中的涤纶水热炭化后的 SEM 图。由图 2 (a)、(c)可以看出涤纶线内部的涤纶纤维表面光滑,密集规 整排列,纤维直径在 10 μ m 左右。如图 2(a)、(b)所示,涤纶 直接水热反应后,纤维表面生成的炭球细密微小,且分布不 够均匀,纤维表面炭化程度很低。而在相同温度及反应时长 的条件下,在葡萄糖溶液中进行水热反应的涤纶纤维(图 2 (c)、(d))表面生成的炭微球数量较多且分布广泛,基本呈单 分散态,其比表面积大,增加了吸附位点,提高了吸附能力。 炭球直径大都在 0.5~1.5 μ m,个别过大或过小是由受热不 均匀所致。炭微球覆盖不够密集,与水热反应中葡萄糖溶液 的浓度有关。从图 2 中可以看出,部分涤纶纤维表面有絮状 结构出现,形似海胆,这是由于加入少量丙烯酸时,生成了由 更小微球组成的团聚体^[14]。

图 3 中 GCs 在 $2\theta = 21.6^{\circ}$ 处出现一宽峰,表明葡萄糖炭 球主要以无定形碳的形式存在。由图 3(a)、(b)可知,涤纶纤 维在葡萄糖溶液中水热反应前后的 XRD 峰基本没有变化, 没有出现新的衍射峰,并且各衍射峰的位置基本不变,在 $2\theta =$

冬 1 GC@PFs 的形成机理

Fig.1 Formation mechanisms of GC@PFs

 17.4° 、22.9°、26.3°左右出现三个强的衍射峰,对应涤纶的 (010)、(110)、(100)晶面的特征衍射峰[15]。实验中可观察 到反应后的涤纶由白色变为棕褐色,结合 SEM 图像,表明葡 萄糖炭球负载到纤维表面起到修饰作用,其含量低,但单分 散性好。

Colloid particle

HO

不同放大倍数下(a、b)水热后的涤纶纤维(H-PFs) **图** 2 和(c、d)在葡萄糖溶液中水热反应后的涤纶纤维 (GC@PFs)的 SEM 图

Fig.2 SEM images of (a,b) H-PFs and (c,d) GC@PFs observed under different magnifications

为了解涤纶纤维制备过程中的官能团变化,采用傅里叶 红外光谱(FTIR)分别对涤纶纤维(PFs)、在丙烯酸中浸泡过 的涤纶纤维(A/PFs)及水热反应后的涤纶纤维(H-A/PFs)、 加葡萄糖水热反应的涤纶纤维(GC@PFs)以及纯葡萄糖炭 球(GCs)进行表征,结果如图4所示。

microspheres

图 3 PFs、GC@PFs 和 GCs 的 XRD 图 Fig.3 XRD patterns of PFs, GC@PFs, GCs

与 PFs 相比, A/PFs 在 1 710 cm^{-1} 处的 C=O 吸收峰变 强,说明丙烯酸与涤纶分子反应,羰基和羧基负载到涤纶纤 维上。制备出的 GC@PFs 与 H-A/PFs 的官能团基本一致, 2 969 cm⁻¹和 2 908 cm⁻¹处的峰是由亚甲基(-CH₂)振动引起 的;1 716 cm⁻¹附近的最强谱带是 C=O 伸缩振动引起的吸 收峰;1 250 cm⁻¹和 1 103 cm⁻¹处的两条谱带归属于苯环上 C-O 键的伸缩振动;872 cm⁻¹处的谱带归属于苯环上两个相 邻的次甲基(-CH)的变形振动;725 cm⁻¹处的谱带由苯环上 C-H 键的面外弯曲振动吸收引起^[16]。从图 4 中可以观察到, 与 H-A/PFs 在 3 430 cm⁻¹附近由-OH 键的伸缩振动引起的 吸收峰相比,GC@PFs 在 3 100~3 700 cm⁻¹区域形成的峰 更为宽而散,并且 GC@PFs 在 1 700 cm⁻¹及 C=O 的吸收峰 明显变强,这是由于叠加了葡萄糖炭球中的芳香醛的低频 C=O伸缩振动峰,1 017 cm⁻¹处 C-OH 键的伸缩振动吸收峰 亦然^[17-19]。据此表明,具有含氧基团的水热炭质已经成功地 包覆在涤纶纤维表面。

2.3 葡萄糖炭-涤纶复合纤维的表面电位及表面酸性 基团含量

从图 5(a)可以看出,H-A/PFs、葡萄糖炭球(GCs)和样 品(GC@PFs)的 Zeta 电位分别为一4.82 mV、-22.8 mV、 -8.16 mV。与水热反应中未加入葡萄糖溶液的涤纶纤维 (H-A/PFs)相比,样品的 Zeta 电位降低,说明炭球已经负载 到涤纶纤维表面,证明成功构建了葡萄糖炭-涤纶复合纤 维^[20]。为了研究表面电荷和吸附能力的关系,测试了不同 pH 值下复合纤维的 Zeta 电位。如图 5(b)所示,检测到 GC @PFs 的等电点(pH_{pec})在 3.6 附近。在等电点以下,带负电 的复合纤维的表面能通过静电相互作用有效地吸附重金属 阳离子,如 Cr⁶⁺、Cu²⁺、Pb²⁺等。表面电荷的值随着 pH 值的 降低而增大,从而导致较高的吸附量^[21-22]。

由 GC@PFs 的 FTIR 结果分析可知,制得的葡萄糖炭-涤纶复合纤维表面含有大量的含氧官能团,如羧基、羰基、醛 基等。因此本工作采用 Boehm 滴定法^[23],根据酸碱中和原 理,测定样品表面的酸性含氧基团。一般认为 NaHCO₃ 仅 中和样品表面的羧基,Na₂CO₃ 可中和表面的羧基和内酯基, 而 NaOH 可中和表面的羧基、内酯基和酚羟基,根据碱消耗 量的不同,可计算出相应官能团的含量,结果如表 1 所示。 样品表面酸性基团总量为 1.95 mmol \cdot g⁻¹,羧基为 1.20 mmol \cdot g⁻¹,说明复合纤维表面酸性官能团以-COOH 为主, 主要是由葡萄糖在形成炭球的水热过程中脱水缩合和芳环 化产生的。这些活性官能团的存在可有效提高样品对重金 属的吸附性能。

表 1 GC@PFs 表面的酸性基团含量

Table 1 Contents of surface acidic groups on GC@PFs

C 1	Phenolic	Lactonic	Carboxylic	Acid groups
Samples	mmol • g^{-1}	mmol • g^{-1}	mmol • g^{-1}	mmol • g^{-1}
GC@PFs	0.15	0.60	1.20	1.95

2.4 葡萄糖炭-涤纶复合纤维的力学性能及吸附性能

涤纶的强度比棉花高近一倍,比羊毛高三倍,涤纶长丝 的断裂强度为 4.5~5.5 g/d,涤纶短纤维为 3.5~5.5 g/d。对 水热后的复合结构进行简单拉力测试得出,涤纶线在葡萄糖 水溶液中 180 ℃反应 4.5 h 后仍可承受约 1.15×10⁻² N 的静 拉力。结果表明,涤纶纤维的分子链存在部分断裂,处理后 仍具有完整丝线形态,用于污水处理等方面易于分离回收。

GC@PFs、PFs对不同初始浓度 PbCl₂ 溶液的吸附量对 比如图 6(a)所示,可以明显看出,负载了炭微球的涤纶纤维

图 6 (a)GC@PFs、PFs 对不同浓度 PbCl₂ 溶液的吸附量; (b)吸附量随时间的变化曲线(pH=6.3,T=14 ℃) Fig.6 (a) The amount of GC@PFs,PFs adsorb different concentration of PbCl₂ solution;(b) the curve of adsorption amount with time (pH=6.3,T=14 ℃)

对铅离子的吸附量大大提升。从图 6(b)可观察到随着时间 的延长 GC@PFs 对不同浓度的 PbCl₂ 溶液中 Pb²⁺吸附量的 变化。吸附初始阶段吸附量迅速上升,40 min 的吸附量约为 平衡吸附量的 50%。且对于不同浓度的氯化铅溶液,吸附速 率几乎相同。葡萄糖水热生成的炭球外表面具有大量羟基 (-OH)、羧基(C=O)等活性含氧官能团,这些含氧官能团可 通过配位键、氢键、静电作用等与重金属离子结合。在吸附 初期,GC@PFs 表面存在大量吸附位点,能与 Pb²⁺迅速结 合,铅离子充分接触炭球表面并进入空隙内部就能有效地被 吸附,吸附速率明显增大。然后随着吸附位点减少及吸附剂 表面的位阻效应,吸附速率开始减缓,吸附逐渐接近平衡。 GC@PFs 对铅离子的静态吸附在 180 min 趋于平衡,6.0 h 时达到完全吸附平衡。并且随着初始浓度的增加,GC@PFs 的平衡吸附量呈现上升趋势,增加初始浓度提高了吸附反应 的推动力,促进离子吸附。随着初始浓度的增大,阶梯浓度 的平衡吸附量的增量越来越小,金属离子浓度达到一定值 时,吸附容量几乎是恒定的^[24]。可以观察到,金属离子浓度 为 5 mg/L 时的去除率最大,约为 83%,浓度为 10 mg/L、20 mg/L、30 mg/L 时分别为 67%、41%和 30%。因此该复合结 构对低浓度重金属离子污水的吸附净化效果较好。

为探讨吸附机理,采用准一级动力学模型和准二级动力 学模型对 GC@PFs 吸附不同初始浓度氯化铅溶液的动力学 数据进行拟合^[25],拟合得到的动力学参数见图 7 和表 2。

准一级动力学方程:
$$\ln(q_e - q_t) = \ln q_e - k_1 t$$
 (2)

准二级动力学方程:
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
 (3)

式中: q_t 和 q_e 分别代表t时刻与平衡吸附时的单位吸附量 (mg•g⁻¹), k_1 为准一级吸附常数(min⁻¹), k_2 为准二级吸 附常数(g•mg⁻¹•min⁻¹)。

从表 2 可以看出,准二级动力学模型的相关系数 R² 数

表 2	GC@PFs	吸附	Pb ²⁺ 动力学模型参数
-----	--------	----	--------------------------

Table 2 Parameters of two kinetic models for adsorption of 1	Pb^{2+}
--	-----------

C_0 mg • L ⁻¹	0	Pse	Pseudo-first-order model			Pseudo-second-order model		
	\mathbf{Q}_{e} mg • g ⁻¹	$q_{ m e}$ mg • g ⁻¹	k_1 min^{-1}	R^2	$q_{ m e} \ { m mg} ullet { m g}^{-1}$	k_2 mg • g ⁻¹ • min ⁻¹	R^2	
5	4.15	3.46	0.017 2	0.918	5.35	0.003 54	0.954	
10	6.69	7.83	0.020 5	0.975	8.90	0.001 73	0.977	
20	8.22	5.86	0.020 3	0.946	9.08	0.005 08	0.997	
30	9.07	7.93	0.020 3	0.971	10.7	0.002 79	0.998	

图 7 (a) 准一级动力学拟合, (b) 准二级动力学拟合

值更大,说明准二级吸附动力学方程更符合 GC@ PFs 对 Pb²⁺的吸附过程,并且拟合所得的平衡吸附量与实际测得的 平衡吸附量相差不大。结果表明,该吸附过程中吸附速率受 化学吸附机理的控制。

图 8 不同温度下 GC@PFs 对 Pb²⁺ 的等温吸附曲线 Fig.8 Isothermal adsorption process line of Pb²⁺ by

GC@PFs at different temperatures

在 pH=6.3,温度分别为 10 ℃、20 ℃、30 ℃的条件下, GC@PFs 对浓度为 10~60 mg/L 的 Pb²⁺的平衡吸附量如图 8 所示。实验中采用 Freundlich 和 Langmuir 等温方程对不 同温度条件下的平衡吸附量进行拟合分析^[25]。

Langmuir 方程:
$$Q_{e} = -\frac{1}{b} \frac{Q_{e}}{C_{e}} + Q_{m}$$
 (4)

Freundlich 方程:
$$\ln Q_{e} = \frac{1}{n} \ln C_{e} + \ln K_{f}$$
 (5)

式中: C_e 、 Q_e 和 Q_m 分别代表溶液中的吸附平衡浓度(mg/L)、平衡吸附量(mg/g)和吸附剂的最大吸附量(mg/g);b为 Langmuir 常数(L/mg), K_f 为 Freundlich 常数,n为浓度指数。

拟合结果如表 3 所示,由 Langmuir 等温模型拟合结果 可得,在 20 $^{\circ}$ 、 $_{p}$ H= 6.3 的条件下,复合材料的最大吸附量 可达 20.2 mg/g。据表 $3 \text{ 中 } R^2$ 的值可知,两种吸附模型都能 较好地用于描述本实验的吸附过程, Freundlich 吸附方程稍 优于 Langmuir 吸附方程。Freundlich 吸附模型中等温吸附 特征常数 1/n 小于 1,表明 GC@PFs 对 Pb²⁺的吸附过程为 单分子层吸附。1/n 的值在 0.5 附近,表明 GC@PFs 对 Pb²⁺ 的吸附特性良好,吸附易于进行。

表 3 GC@PFs 对 Pb^{2+} 的吸附等温线线性拟合参数

Table 3 Linear fitting parameters of the adsorption isotherm of Pb^{2+} by GC@PFs

Т		Langmuir equation			Freundlich equation		
°C	$Q_{ m m}/(m mg/g)$	b/(L/mg)	R^{2}	$K_{ m f}$	1/n	R^2	
10	16.6	0.059	0.967	2.38	0.44	0.991	
20	20.2	0.052	0.973	2.11	0.48	0.991	
30	19.2	0.054	0.981	2.67	0.46	0.992	

3 结论

(1)以丙烯酸为交联剂,采用一步水热法制备出表面附 有葡萄糖炭球的涤纶纤维纳米复合材料(GC@PFs)。该复 合材料保留了涤纶线的原始形态,合成的炭微球在涤纶纤维 表面分布均匀,粒径为 0.5~1.5 µm。

(2)该方法制备出的葡萄糖炭-涤纶复合纤维表面酸性基团总量为 1.95 mmol・g⁻¹,pH_{pe}在 3.6 附近。吸附试验中复合材料对 Pb²⁺的最大理论吸附量为 20.2 mg/g(20 ℃,pH= 6.3)。吸附过程在 180 min 基本达到平衡,与准二级动力学方程拟合度高,等温吸附过程更符合 Freundlich 吸附模型。

(3)葡萄糖和废弃涤纶量多易得。材料的制备方法简 便,易于分离回收。具有该复合结构的吸附材料在污水处理 等领域拥有广阔的应用前景。

参考文献

- 1 Fan Y, Liu P F, Huang Z Y, et al. Porous hollow carbon spheres for electrode material of supercapacitors and support material of dendritic Pt electrocatalyst[J].Journal of Power Sources,2015,280:30.
- 2 Zheng P, Li H Y, Wu F, et al. Structure-tunable hydrothermal synthesis of composite TiO₂ @ glucose carbon microspheres (TiO₂ @ GCs) with enhanced performance in the photocatalytic removal of acid fuchsin (AF)[J].New Journal of Chemistry, 2015, 39(11):8787.
- 3 Liu S X, Sun J, Huang Z H. Carbon spheres/activated carbon composite materials with high Cr(\[]) adsorption capacity prepared by a hydrothermal method[J].Journal of Hazardous Materials, 2010, 173 (1-3):377.
- Mi Y, Hu W, Dan Y, et al. Synthesis of carbon micro-spheres by a glucose hydrothermal method[J]. Materials Letters, 2008, 62(8-9): 1194.
- 5 Falco C, Baccile N, Titirici M M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons [J]. Green Chemistry, 2011, 13 (11): 3273.
- 6 Wu S, Ding Y, Zhang X, et al. Synthesis and characterization of carbon thin wires linked carbon hollow spheres encapsulating Ag nanoparticles[J].Materials Letters, 2008, 62(17-18):3301.
- 7 Zhang P, Yuan J, Fellinger T P, et al. Improving hydrothermal carbonization by using poly(ionic liquid)s[J]. Angewandte Chemie International Edition, 2013, 52(23):6028.
- 8 Huang Yanhong, Li Mengjuan, Ge Mingqiao. Synthesis of azo dyestuff using terephthalic acid depolymerized from waste polyester fi-

ber[J].New Chemical Materials,2014(3):92(in Chinese).

黄艳红,李梦娟,葛明桥.废弃涤纶纤维解聚产物对苯二甲酸制备偶 氮染料[J].化工新型材料,2014(3):92.

9 Pu Yaning, Zhao Chuan, Wang Xueyan. Study on polyester grafted with acrylamide and its adsorption properties of Cu²⁺ [J]. Textile Auxiliaries, 2015(6):13(in Chinese).

蒲亚宁,赵川,王雪燕.聚酯纤维上丙烯酰胺接枝性能及其对铜离子 吸附性能的研究[J].印染助剂,2015(6):13.

10 Dong Jing. Study on preparation of PET@MgFe₂O₄ and their treatment of dyeing wastewater[D]. Chongqing: Southwest University, 2015(in Chinese).

董静. $M_{g}Fe_{2}O_{4}$ 涤纶复合材料的制备及其处理染料废水的研究[D]. 重庆:西南大学,2015.

- 11 Wen Z, Wang Q, Zhang Q, et al. Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells[J].Electrochemistry Communications, 2007, 9(8):1867.
- 12 Zheng M, Liu Y, Jiang K, et al. Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J].Carbon,2010,48(4):1224.
- 13 Demircakan R, Baccile N, Antonietti M, et al. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid[J].Chemistry of Materials,2009, 21(3):484.
- 14 Chen Wenting. One-step hydrothermal preparation of glucose-based carbonaceous microspheres and its adsorption for the heavy mental Pb([])[D].Tianjin: Nankai University, 2013(in Chinese). 陈文婷.一步法水热合成葡萄糖基碳微球及其对重金属铅离子的吸

陈文婷,一步法小热言成葡萄糖基顿,佩珠及其为重金属 铅离于的吸 附研究[D].天津:南开大学,2013.

15 Zhou Tingting. Research on the preparation of nano silver and its application in the antibacterial finish of polyester fabrics[D]. Suzhou: Soochow University,2012(in Chinese).

周婷婷.纳米银的制备及其对涤纶织物的抗菌整理研究[D].苏州:苏州大学,2012.

16 Zhang Xianmiao, Dong Jiwen. Rapid identification of several common industrial fibers with FTIR ATR[J]. Technical Textiles, 2015 (9);31(in Chinese).

张贤森,董激文.利用 FTIR-ATR 快速鉴别几种常见产业用纤维[J]. 产业用纺织品,2015(9):31.

- 17 Zhao R, Wang Y, Li X, et al. Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide[J].ACS Sustainable Chemistry & Engineering,2016,4(5):2584.
- 18 Zhang Z B, Liu Y H, Cao X H, et al. Sorption study of uranium on carbon spheres hydrothermal synthesized with glucose from aqueous

solution[J].Journal of Radioanalytical and Nuclear Chemistry,2013, 295(3):1775.

- 19 Li T, Shen J, Li N, et al. Facile and novel hydrothermal preparation of functionalised carbon microspheres from glucose by using graphene sheets as a substrate[J].Materials Letters, 2012, 89(25):202.
- 20 Wang C, Yan J, Li Z, et al. Investigation on raspberry-like magnetic-hollow silica nanospheres and its preliminary application for drug delivery[J].Journal of Nanoparticle Research, 2013, 15(9):1.
- 21 Lin F, Wang Y, Lin Z. One-pot synthesis of nitrogen-enriched carbon spheres for hexavalent chromium removal from aqueous solution [J].RSC Advances,2016,6(39):33055.
- 22 Huang F C, Lee C K, Han Y L, et al. Preparation of activated carbon using micro-nano carbon spheres through chemical activation[J].
- (上接第 880 页)
 - 王啸虎,陈义钢,于嵩,等.不同浓度 Mg-6Zn 合金浸提液对肠上皮细 胞凋亡及其相关基因 Caspase-3 表达的影响[J].材料导报:研究篇, 2015,29(4):47.
- 17 Zhu M Q. Reasearch on absorbable hemostatic gauze[D].Hangzhou: Zhejiang University,2014(in Chinese).

朱美琴.可吸收止血纱布研究[D].杭州:浙江大学,2014.

- 18 Mao J S, Cui Y L, Wang X H, et al. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis[J].Biomaterials,2004,25(18):3973.
- 19 Ma L K, Ye P, Deng J, et al. The cytotoxicity of silk fibroin/chitosan/nano hydroxyapatite bone tissue engineering scaffolds in vitro [J].Medical Journal of West China,2014,26(8):975(in Chinese).
 马立坤,叶鹏,邓江,等.丝素蛋白/壳聚糖/纳米羟基磷灰石骨组织工 程支架材料的体外细胞毒性评价[J].西部医学,2014,26(8):975.
- 20 Wang X, Shi Y P, Zhu X T, et al. Evaluation on the cytotoxicity of polymeric material for medical use by MTT-assay[J]. Shangdong

Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2805.

- 23 Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J].Carbon,1994,32(5):759.
- 24 Wu Q, Li W, Liu S. Carboxyl-rich carbon microspheres prepared from pentosan with high adsorption capacity for heavy metal ions[J]. Materials Research Bulletin, 2014,60:516.
- 25 Mallampati R, Li X, Valiyaveettil S, et al. Fruit peels as efficient renewable adsorbents for removal of dissolved heavy metals and dyes from water[J]. ACS Sustainable Chemistry & Engineering, 2015, 3 (6):1117.

(责任编辑 杨 霞)

Journal of Biomedical Engineering,2003,22(1):46(in Chinese). 王昕,施嬿萍,朱雪涛,等.MTT 法评价医用高分子材料的细胞毒性 [J].山东生物医学工程,2003,22(1):46.

- 21 奚廷斐.医疗器械生物学评价[M].北京:中国标准出版社,2012:98.
- 22 Yang L J, Si X H, Wang W L, et al. Detection of apoptosis in hepatoma cells under optical microscopic observation after stained by six methods[J].Journal of Practical Medical Techniques, 2006, 1(1): 8 (in Chinese).

杨连君,司晓辉,王文亮,等.六种染色后光镜观察法检测肝癌细胞凋 亡[J].实用医技杂志,2006,1(1):8.

- 23 Murni N S, Dambatta M S, Yeap S K, et al. Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells [J].Materials Science and Engineering: C.2015,49:560.
- 24 Li K, Zhou R, Jia W W, et al. Zanthoxylum bungeanum essential oil induces apoptosis of HaCaT human keratinocytes[J].Journal of Ethnopharmacology,2016,186:351.

(责任编辑 余 波)