MnO₂@海藻酸基炭吸附去除双氯芬酸钠及其再生

罗 钰¹,白 波¹,王洪伦²,索有瑞²,姚以亮¹
(1.长安大学 旱区地下水文与生态效应教育部重点实验室,陕西 西安 710054;
2.中科院西北高原生物研究所,青海 西宁 810001)

摘要:通过热裂解法制备了 MnO₂@ 海藻酸炭微球复合吸附剂,并以双氯芬酸钠为代表,考察了溶液 pH 值、双氯芬酸钠初始质量浓度和吸附剂投加量对吸附性能的影响。通过扫描电子显微镜(SEM)表征了颗粒表面形貌。并以表面富集双氯芬酸的吸附剂为类 Fenton 体系的催化剂研究了吸附剂的再生效果。结果表明:吸附剂在酸性条件下表现出较好的吸附能力;双氯芬酸钠初始质量浓度越大,平衡吸附量越大;吸附量随着吸附剂投加量的增加而减小;吸附过程符合 Langmuir 等温吸附模型和准二级动力学模型,从水中吸附 DCF 是自发的、吸热的,并且在吸附过程中同时起主导作用,吸附过程自发进行并且有效地实现了吸附剂的原位再生和循环使用。 关键词:二氧化锰;海藻酸钠;双氯芬酸;动力学;热力学;等温模型;原位再生 中图分类号:X 703 文献标识码:A 文章编号:1005-9954(2018)04-0022-07

DOI: 10. 3969/j. issn. 1005-9954. 2018. 04. 005

Adsorptive removal of diclofenac by MnO₂@alginate-carbon and regeneration

LUO Yu¹, BAI Bo¹, WANG Hong-Iun², SUO You-rui², YAO Yi-liang¹

(1. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang´an University, Xi´an 710054, Shaanxi Province, China; 2. Northwest Plateau Institutes of Biology, Chinese Academy of Sciences, Xining 810001 Qinghai Province, China)

Abstract: MnO_2 @ alginate-carbon composite microspheres were successfully prepared by the thermal cracking method. Various factors affecting the adsorption process , such as pH , initial mass concentration of diclofenac sodium (DCF) and adsorbent dosage were discussed , respectively. The particle morphology of MnO_2 @ alginate-carbon composite was characterized by scanning electron microscope (SEM). Regeneration ability of MnO_2 @ alginate-carbon was also evaluated by Fenton-like reaction. The results indicate that the composite adsorbent shows good adsorption ability under acidic conditions , and the higher initial mass concentration of diclofenac sodium leads to the greater equilibrium adsorption capacity. However , the adsorption amounts decrease with the initial mass concentration of DCF prolonging. Moreover , the adsorption process of DCF by MnO_2 @ alginate-carbon is in better correlation with the pseudo-second-order kinetic equation and Langmuir isothermal model. Absorption of the DCF from aqueous solutions is spontaneous and endothermic , and they are dominated simultaneously. The adsorptive enrichment of DCF onto the surface of MnO_2 @ alginate-carbon adsorbent could be effectively regenerated and recycled.

Key words: MnO₂; sodium alginate; diclofenac; kinetics; thermodynamics; isotherm model; regeneration

双氯芬酸钠(DCF) 是一种有效抗炎、镇痛类的 非甾体抗炎药。由于双氯芬酸钠在环境中生物难降 解及累积作用,双氯芬酸钠在地表水体和废水处理 系统的质量浓度已经由 μg/L 逐步上升到 ng/L^[1-2], 给生态和人居环境带来极大风险。据此,有效处理 滞留环境中的双氯芬酸废水成为降解难处理废水的

收稿日期: 2017-06-24

基金项目: 陕西省自然科学基金项目(2015JM2071);中央高校基本科研项目(310829165027)

作者简介:罗钰(1984—),女,博士研究生,主要从事新型功能材料方面的研究工作;白波(1972—),男,博士生导师,通信联系人,主要从事纳米复合物的制备及应用,E-mail: baibochina@163.com。

一种典型。

双氯芬酸钠废水处理方法包括吸附法^[3]和高 级氧化法^[4]。吸附法因操作简单、低成本和无二次 污染受到广泛的应用。常用的吸附剂包括活性 炭^[5]、粘土^[6]、硅胶^[7]和分子筛^[8]等,然而,传统的 吸附剂存在诸多严重问题^[9]。近年来,Fenton 反应 与吸附耦合相结合能有效解决溶液中吸附剂饱和后 的再生难题^[10]。该路线操作简单,反应条件温和, 再生利用吸附剂可通过 H₂O₂ 浓度实现调控,使得 吸剂的活性位点实现原位再生。海藻酸钠的衍生物 作为一种支撑型吸附剂被广泛应用^[1142]。利用其 凝胶的特性,通过热裂解方法制得的海藻酸基炭微 球,既具备了海藻酸钠成型剂的特性,还具备了生物 活性炭的吸附特性,成为近年来废水处理的主要方 向之一^[13]。

为了克服传统 Fenton 氧化法去除废水中的有 机污染物存在反应时间长及成本较高等问题,富集 或预浓缩构建类 Fenton 体系的吸附方法被用来处 理该类有机废水^[14]。和传统的铁离子型 Fenton 催 化剂相比较 二氧化锰是最具吸引力的过渡金属氧 化物 易于和氧化剂形成的类 Fenton 体系的反应物 而去除废水中的污染物^[15]。另外,研究表明二氧化 锰能催化降解 H₂O₂ 使其产生强氧化性的羟基、氧 基和羧基等基团 这些基团能氧化去除废水中的有 机污染物^[16]。因此 利用 Mn/H₂O₂ 构建的类 Fenton 系统来降解有机污染物是一个非常有前途的去除有 机物的方法。基于此 文中用热裂解法制备了 MnO,@ 海藻酸基炭微球(MnO,@alginate-carbon)复合吸附 剂 并以双氯芬酸钠为代表 探讨了该吸附剂对抗炎 药物的吸附特性。同时考察了以表面富集 DCF 的 MnO₂@ 海藻酸炭微球为类 Fenton 体系的催化剂 实 现废水中双氯芬酸钠的氧化降解,达到吸附剂的再 牛和循环使用。研究结果对含有双氯芬酸钠废水的 处理提供理论依据和参考价值。

1 实验

1.1 仪器和材料

实验仪器: 752N 紫外可见分光光度计,上海精 密科学仪器有限公司; 多功能磁力搅拌器 杭州仪表 电机厂; pH 计,上海精密仪器厂; Hitachi S-4800 冷 场发射扫描电镜; 天津泰斯特仪器有限公司; 透射电 子显微镜,日本 Hitachi 公司。

实验试剂:海藻酸钠,天津市东丽区天大化学试剂厂;硫酸锰和高锰酸钾,天津永昊精细化工有限公

司;乙醇,天津市天津市富宇精细化工有限公司;双 氯芬酸钠,TCI公司。

- 1.2 吸附剂的制备
- 1.2.1 二氧化锰的制备

高锰酸钾和硫酸锰按照摩尔比 2:3 分别溶于 30 mL 水中,恒温磁力搅拌至少 30 min。然后将混 合溶液放入高压反应釜中于 180 ℃ 10 h。反应后的 溶液在室温下冷却分离,把固体沉淀物用水和乙醇 反复冲洗。冲洗后的沉淀物烘干,制得 MnO₂ 微粒。 1.2.2 MnO₂@海藻酸炭微球的制备和表征

配制质量分数 2.5% 的海藻酸钠溶液,恒温搅 拌5h。把一定量的二氧化锰微粒加入上述溶液中, 恒温磁力搅拌 10h 后滴加到 0.05 mg/L 的硫酸锰 溶液中生成 MnO_2 @ 海藻酸胶球,放入 4 % 冰箱 10 h。再把胶球冷冻干燥后置于 350 % 真空炉中 1 h, 冷却后制得 MnO_2 @ 海藻酸碳微球复合吸附剂。

1.3 吸附实验

常温状态下 在 pH 值为 5 时 ,于 200 mL 锥形瓶 中加入 0.050 g 的吸附剂和 DCF 钠溶液 连续磁力搅 拌 4 h 同时每隔一段时间从溶液中提取 5 mL 上清液 离心分离 分离后的上清液于波长 280 nm 处测其吸 光度 通过 DCF 的标准曲线计算出不同时刻下的吸 附量(Q_{e} ,mg/g)及去除率(η %) 其计算公式为

$$Q_{e} = \frac{(\rho_{0} - \rho_{e}) \times V}{m} \tag{1}$$

$$\eta = \frac{\rho_0 - \rho_e}{\rho_0} \tag{2}$$

式中: Q_e 为吸附剂平衡时的吸附量 ,mg/g; η 为去除 率 , β_c ; ρ_0 和 ρ_e 分别为双氯芬酸在吸附开始和平衡后 的质量浓度 ,mg/L; *V* 为溶液容积 ,L; *m* 为吸附剂质 量 g。

1.4 吸附剂的原位再生

常温常压下,把0.050g复合吸附剂加入到pH 5 50 mL的10 mg/L双氯芬酸溶液中,恒温磁力搅 拌4h,待吸附剂吸附饱和后测其吸光度并计算双氯 芬酸钠的吸附率。然后,把吸附饱和的MnO₂@海藻 酸炭微球离心干燥,加入到质量分数为10%的 H₂O₂溶液中,磁力搅拌1h,再把吸附剂离心烘干后 加入同体积、同质量浓度、同pH值的双氯芬酸溶液 中重复3次,测定吸附剂对双氯芬酸钠的吸附率。

2 结果与讨论

2.1 吸附剂 SEM 表征

图 1(a) 是 MnO₂@ 海藻酸凝胶(左) 和其炭化

后的照片(右)。可知,凝胶为黑色球形结构,大小 为(2.0±0.2) mm ,表面光滑,大小均匀。图1(b)为 SEM 一个完整的吸附剂微球,表面粗糙不平,有明 显的褶皱,粒径为(1.4±0.2) mm。其表面褶皱可 归咎于3个主要原因:①凝胶在冷冻干燥条件下脱 去自由水分子后的缩水效应;②MnO₂颗粒嵌入海 藻酸凝胶后引起分子间作用力的变化;③吸附剂在 炭化的过程中大分子链之间由于缩聚反应脱去水分 子而形成褶皱表面。图1(c)是局部表面放大了的 MnO_2 @海藻酸炭微球 SEM 图。可以看出,海藻酸 炭微球表面均匀分散着 MnO_2 颗粒,其颗粒大小为 (400.0±2.0) μ m 长 (20.0±2.0) μ m 宽。

(a) MnO₂@海藻酸凝胶(左)和其炭化微球(右)

(b) MnO₂@海藻酸炭微球

(c) 表面放大的吸附剂微球

图 1 吸附剂 SEM 表征 Fig. 1 SEM characterization of adsorbent

- 2.2 吸附的影响因素
- 2.2.1 pH 值的影响

DCF 初始质量浓度为 20 mg/L、吸附剂投加量 为 0.050 mg 的条件下,调节 pH 值(4—9) 时间为 3 h。由图 2 可知,DCF 的吸附量和吸附效率均随着 pH 值的升高先升高,到 pH = 5 的时候到达最大值, 为 8.45 mg/g 然后均随着 pH 值的增大而减小,在 pH = 9 时达到实验最小值,为 3.26 mg/g。由此可 见 酸性条件有利于吸附剂对双氯芬酸钠的有效吸 附,而碱性条件不利于吸附剂吸附双氯芬酸钠。

图 2 溶液 pH 值对 MnO₂ @ 海藻酸炭微球吸附 DCF 的影响 Fig. 2 Effects of pH on adsorption efficiency and capacity of DCF by MnO₂ @ alginate-carbon

当 pH 值较低时(pH = 4),DCF 以分子形式存 在,溶液中 H₃O⁺使 DCF 分子中的羧基部分带正电 荷;同时吸附剂表面富含电子的 π 键吸附 H₃O⁺而 带正电荷,同种电荷产生分子斥力引起吸附剂不易 吸附双氯芬酸钠^[16]。当 pH 值增大时(pH = 5—7), DCF 在溶液中以离子形式和分子形式共同存在。 离子形式的双氯芬酸中羧基负离子易吸收电子而带 负电荷,使 DCF 在吸附剂上的吸附量增加。随着 pH 值的继续增大(pH > 7),DCF 主要以羧酸盐的负 离子形式存在,吸附剂表面的羧基不断离子化,在分 子斥力作用下不利于吸附的进行。

2.2.2 DCF 初始质量浓度和吸附剂投加量的影响

实验所得数据见图 3。可知,随着 DCF 溶液质 量浓度从 10 mg/L 增加到 40 mg/L,平衡吸附量逐 渐增大,从 4.37 mg/g 增加到 13.45 mg/g。这种现 象是由于:①当 DCF 溶液在低质量浓度时,吸附剂 表面的活性位点部分被 DCF 分子占有,随着溶液质 量浓度的增加,越来越多的活性位点被 DCF 分子所 占有;②DCF 初始质量浓度的增加提供了强力的驱 动力来克服 DCF 分子吸附到吸附剂表面时产生的

传质阻力。

从图 3 可知,当 DCF 溶液质量浓度为 20 mg/L、 pH 值为 5 时,吸附剂吸附 DCF 的平衡吸附量随着 吸附剂投加量的增加而减小,从 8.33 mg/g 减小至 4.73 mg/g。这是由于随着吸附剂投加量的增加, DCF 分子接触的吸附剂表面积增大,使得吸附剂表 面吸附位点和 DCF 分子间的浓度梯度增大^[17]。同 时吸附剂投加量的增加引起了吸附剂颗粒间由于分 子间力的作用而发生聚合,引起 DCF 分子的扩散路 径增加而使平衡吸附量减小。

图 3 DCF 初始质量浓度和吸附剂投加量对吸附的影响 Fig. 3 Effects of DCF initial mass concentration and MnO₂@ alginatecarbon dosage on adsorption

2.3 吸附等温线

为了了解吸附剂表面性质和 DCF 分子的吸附 行为,Langmuir,Freundlich 和 Dubinin-Radushkevich 等温吸附模型被用来探索吸附机理。实验是在常 压,温度为 293.15,303.15,313.15 K 下改变 DCF 溶液初始质量浓度来测定溶液的平衡吸附量并对等 温曲线进行拟合。其表达式分别为 Langmuir 方程:

$$Q_{\rm e} = \frac{Q_{\rm max} \times b \times \rho_{\rm e}}{1 + b \times \rho_{\rm e}} \tag{3}$$

Freundlich 方程:

$$Q_{\rm e} = K_{\rm f} \times \rho_{\rm e}^{1/n} \tag{4}$$

Dubinin-Radushkevich 方程:

$$\ln Q_{e} = \ln Q_{\max} - k_{DR} \cdot \varepsilon^{2}$$
 (5)

其中

$$\varepsilon = R \times T \times \ln(1 + 1/\rho_{\rm e}) \tag{6}$$

式中: Q_{max} 为最大饱和吸附量 ,mg/g; b 为 Langmuir 常数 L/mg; K_f 为吸附能力平衡常数; n 为非均匀系数; k_{DR} 为吸附常数 ,kJ² • mol²; ε 为吸附势; R 为气体常数 ,为 8.314 J/(mol • K)。Freundlich 吸附等温方程 是一个经验公式 n 值越大 ,吸附性能越好。一般认为 1/n = 0.1—0.5 之间 ,容易吸附; 1/n > 2 时吸附较 难进行。另外 引入量纲一分离因子 R_{L} 表达式:

$$R_{\rm L} = \frac{1}{1 + b \times \rho_0} \tag{7}$$

式中: R_L 为分离系数 表示吸附过程的性质 $0 < R_L < 1$ 表示吸附过程为优惠吸附; $R_L > 1$ 则表示吸附过 程不是优惠吸附; $R_L = 1$,吸附过程能够可逆进行; $R_L = 0$,则为不可逆吸附。

图 4(a) —(c) 表示不同温度下吸附剂吸附 DCF 的吸附等温线。由图 4 和表 1 可知, Langmuir 吸附 等温模型的的吸附相关系数范围为 0.997 1—0.998 9, 吸附最大量随温度的升高而增大。同时,量纲一分 离因子 R_L 在不同温度下和不同 DCF 初始质量浓度 下的拟合数值范围为 0.26—0.06。而 Freundlich 模 型相关系数范围为 0.961 4—0.964 2,说明吸附剂 吸附 DCF 的吸附过程为优惠吸附,且符合 Langmuir 等温吸附模型,拟合更加合理。

图4 不同温度下吸附剂吸附等温线

Fig. 4 Isotherms of DCF adsorbed on MnO2@ alginate-earbon with different temperature

ー・・・・ 投稿平台 Http: //imiy. cbpt. cnki. net ・・・・・

表 I 吸附剂吸附 DCF 寺温万桂参3

Table 1	Adsorption	thermod	lynamic	parameters	of DCF	by
		0 0 1	•	1		

MnO_2 @ alginate-carbon					
Langmuir 吸附模型					
T/K	$Q_{ m m}$ /	<i>b</i> /	р	D ²	
	$(mg \bullet g^{-1})$ $(L \bullet mg^{-1})$		R _L	R	
293.15	17.03 0.30		0.24-0.06	0.9971	
303.15	18.20	0.29	0.25-0.07	0.9989	
313.15	20.27 0.28		0.26-0.08	0.998 3	
	Freundlich 吸附模型				
Т/К	$K_{\rm F}/({\rm L} \cdot {\rm g}^{-1})$		n	R^2	
293.15	4.61		2.34	0.9614	
303.15	4.92		2.43	0.963 5	
313.15	5.11		2.49	0.964 2	
T UV					
Т/К	$Q_{\rm m}$ /(mg • g ⁻¹)	$k_{ m DR}$ /	$(kJ^2 \cdot mol^2)$	R^2	
293.15	11.95		0.05	0.914 2	
303.15	13.65		0.14	0.8216	
313.15	14.70		0.24	0.8514	

对于 D-R 等温吸附模型,计算所得最大平衡吸附量均小于 Langmuir 模型计算值,其相关系数 R²相较于 Langmuir 和 Freundlich 均小,范围为 0.821 6—

0.914 2。说明该模型不适合描述吸附过程。

2.4 吸附动力学

常压常温下,调节 pH 值为 5,改变 DCF 溶液质 量浓度来测定溶液平衡质量浓度和平衡吸附量,将 所得吸附数据分别利用准一级、准二级动力学以及 颗粒内扩散模型对吸附剂吸附 DCF 的机理进行 分析。

准一级动力学方程式为

$$\ln(Q_e - Q_t) = \ln Q_e - k_1 \times t \tag{8}$$

准二级动力学方程式为

$$\frac{t}{Q_t} = \frac{1}{k_2 \times Q_e^2} + \frac{t}{Q_e} \tag{9}$$

通过实验所得的吸附动力学平衡吸附量及相关 系数如表 2 所示。Q_{cal}和 Q_{exp}分别代表平衡吸附量 的理论值与实际值。由表 2 可知,准二级动力学模 型的相关系数明显高于准一级动力学模拟的相关系 数。准二级动力学模型的相关系数均在 0.993 以 上,最大值为 0.997。准一级动力学模型的相关系 数较准二级动力学模型的较低,相关系数范围在 0.953—0.991 之间。且准二级动力学模型计算出 的吸附量与理论值更为接近。因此,MnO₂@ 海藻酸 炭微球复合吸附剂对双氯芬酸的吸附过程更加复合 准二级动力学模型,拟合效果较好。

表 2 不同初始质量浓度下 DCF 的吸附动力学参数 Table 2 Kinetic adsorption parameters of different initial mass concentration of DCF

初始质量浓度/	$Q_{ m exp}$ /	一级	动力学			二级动力学	
(mg • L ⁻¹)	(mg • g ⁻¹)	$Q_{\rm cal}$ /(mg • g ⁻¹)	k_1 / \min^-	R^2	$Q_{\rm cal}/({\rm mg} \bullet {\rm g}^{-1})$	$k_2/(\mathbf{g} \cdot \mathbf{mg}^{-1} \cdot \mathbf{min}^{-1})$	R^2
10.0	4.366	4.512	0.021	0.988	4.411	0.218	0.993
20.0	8.329	8.953	0.024	0.953	8.502	0.116	0.997
30.0	11.256	11.652	0.023	0.957	11.482	0.085	0.995
40.0	13.451	13.745	0.023	0.991	13.525	0.071	0.995

2.5 吸附热力学

实验在 293.15,303.15,313.15 K 下考察吸附 剂对 DCF 的吸附过程。通常,热力学参数如吉布斯 自由能变(ΔG,kJ/mol)、焓变(ΔH,kJ/mol)和熵变 [ΔS,J/(mol•K)]等在实际应用中具有重要指导 作用。其值可通过如下方程得到

$$\ln K_{\rm d} = \frac{-\Delta H^{\odot}}{R \times T} + \frac{\Delta S^{\odot}}{R}$$
(10)

$$K_{\rm d} = \frac{Q_{\rm e}}{\rho_{\rm e}} \tag{11}$$

$$\Delta G^{\ominus} = -R \times T \times \ln K_{\rm d} \tag{12}$$

式中: K_{d} 为扩散系数; ΔH^{\ominus} 为焓变 ,kJ/mol; ΔS^{\ominus} 为熵 变 ,J/(mol·K); ΔG^{\ominus} 为吉普斯自由能 ,kJ/mol; *T* 为 开尔文温度 ,K。ln K_{d} 对 1/*T* 作图 ,可分别由斜率和 截距求得 ΔH^{\ominus} 和 ΔS^{\ominus} 。 ΔG^{\ominus} 由式(12) 求得 ,所得结 果见表 3。由表 3 可知 ,吉布斯自由能变 ΔG^{\ominus} 为负 值 ,且值在 – 20—0 kJ/mol 之间 ,吸附主要通过物 理作用进行 ,作用力以范德华力为主 ,吸附的发生 主要为自发反应。同时 ,随着温度的升高 , ΔG^{\ominus} 的 绝对值也随之增大 ,表明吸附过程受温度的影响 显著。 ΔH^{\ominus} 小于 40 kJ/mol ,物理吸附占主导 ,吸附 过程为吸热反应。吸附剂吸附双氯芬酸的 ΔH^{\ominus} 为

13.215 kJ/mol 表明双氯芬酸与吸附剂的吸附为物 理吸附。Δ*S^Θ*为正值说明吸附过程不可逆,且随着 吸附的进行,吸附剂表面吸附了大量的双氯芬酸分 子,水分子逐渐减少,自由水分子增多,固液界面混 乱度增加。

表 3 MnO₂ @ 海藻酸炭微球吸附 DCF 的热力学参数 Table 3 Adsorption thermodynamic parameters of DCF by

MAG	1	· 1
MnO ₂ @	alginate-carbon	microspheres

温度/	K	ΔG^{\ominus} /	ΔH^{\ominus} /	ΔS^{igodot} /
K	M _d	(kJ • mol ⁻¹)	(kJ • mol ⁻¹)	(J•mol ⁻¹ •K ⁻¹)
293.15	2.493	-2.226		
303.15	3.161	-2.901	13.215	52.832
313.15	3.520	-3.276		

2.6 吸附剂的原位再生

实验反应条件为 DCF 初始质量浓度为 20 mg/ L_PH 值为 5 ,温度为 30 ℃,催化剂投加量为 0.050 mg,实验所得数据见图 5 所示。

Fig. 5 Reuse of in situ regenerated MnO2@ alginate-carbon microspheres

从图 5 可以看出 , MnO_2 @ 海藻酸炭微球和海藻 酸炭微球对 DCF 的吸附效率在 3 次循环重复利用 后分别达到 73.32% 和 51.53%。这是因为海藻酸 钠炭微球对溶液中 DCF 的去除主要是通过吸附性 能来实现的 ,而 MnO_2 @ 海藻酸炭微球对溶液中 DCF 的去除不仅仅通过吸附作用实现 ,它主要通过 构建 Mn^{2+} 和 H_2O_2 类 Fenton 体系来实现。在该体 系中 ,猛离子为反应提供了催化剂 ,加速了 H_2O_2 在 溶液中的分解 ,过程主要包括 3 个阶段: ①溶液中 H_2O_2 在锰离子催化作用下分解生成羟基自由基 ,同 时锰离子被氧化成三价金属离子 ,此时 ,吸附剂表面 富集的 DCF 分子和羟基自由基不断发生反应 ,反应 产物为 CO_2 , H_2O 和矿物质酸; ②吸附剂表面富集的 DCF 分子不断向锰离子周围移动,使反应不断进行,而随着 H_2O_2 的不断分解产生羟基自由基, H_2O_2 和羟基自由基反应产生强氧化性的超氧阴离子 O_2^- ;③超氧阴离子 O_2^- 与三价锰离子反应生成二 价金属锰离子,使反应不断进行,并持续产生羟基自 由基。超氧阴离子和羟基自由基反应产生强氧化性 的 1O_2 ,能分解有机污染物,从而提高吸附剂的再生 性能。

3 结论

(1) 通过热裂解法制得的 MnO₂@ 海藻酸基炭 吸附剂对 DCF 分子有有效的吸附性能 吸附能力受 pH 值影响 ,结果显示酸性条件下有利于吸附的发 生 ,最佳 pH 值为 5; 同时 DCF 分子的平衡吸附量随 着吸附质初始质量浓度的增加而增大 ,最大平衡吸 附量为 13.45 mg/g; 但是 DCF 分子平衡吸附量随着 吸附剂投加量的增加而减小。

(2) MnO₂@ 海藻酸炭微球吸附 DCF 分子的吸 附过程更加符合 Langmuir 模型和准二级动力学模 型,说明该吸附过程为单分子层吸附,且吸附过程为 自发进行的吸热过程。

(3) MnO₂@ 海藻酸炭微球具有良好的原位再生 和循环利用性能,在 Mn/H₂O₂ 构建的类 Fenton 体 系中,通过调节溶液中 H₂O₂ 浓度来讲解 DCF 有机 物,有效提高 MnO₂@ 海藻酸炭微球的原位再生和循 环利用率。

参考文献:

- [1] ATTIA T M S, HU Xialin, YIN Daqiang. Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies [J]. Chemosphere, 2013, 93 (9): 2076-2085.
- [2] Coelho A D , Sans C , Agüera A , et al. Effects of ozone pre-treatment on diclofenac: intermediates , biodegradability and toxicity assessment [J]. Sci Total Environ , 2009 , 407(11): 3572-3578.
- [3] Alfred R , Shane A S , Detlef R U K. Removal of Emerging Contaminants of Concern by Alternative Adsorbents
 [J]. Water Research , 2009 , 43(15) : 3787-3796.
- YU Wanlan, XIONGZhenhu, MA Huaji. Degradation of the emergent pollutant Diclofenac in water by photo-Fenton and toxicity evaluation of its degradation products
 [J]. Acta Scientiae Circumstantiate, 2009, 29 (10): 2070-2075.

- [5] HU Xiang, CHENG Zhao, SUN Zhirong, et al. Adsorption of diclofenac and triclosan in aqueous solution by purified multi-walled carbon nanotubes [J]. Pol J Environ Stud, 2017, 26(1): 87-95.
- [6] MANOHAR D M, NOELINE B F, ANIRUDHAN T S. Adsorption performance of Al-pillared bentonite clay for the removal of cobat (II) from aqueous phase [J]. App Clay Sci, 2006, 31(3/4): 194-206.
- [7] SCHULTHESS C P, HUANG Chinpao. Adsorption of heavy metals by silicon and aluminum oxide surfaces on clay minerals [J]. Soil Science Society of America Journal, 1990, 54(54): 679-688.
- [8] RUTHVEN D M, RAGHAVAN N S, HASSAN M M. Adsorption and diffusion of nitrogen and oxygen in a carbon molecular sieve [J]. Chem Eng Sci ,1986 ,41(5): 1325-1332.
- [9] ACHARYA J , SAHU J , SAHOO B K. Removal of chromium (VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride [J]. Chem Eng J , 2009 , 150(1) : 25-39.
- [10] 张霞 白波,丁晨旭 等. Fe₃O₄@ 沙棘枝炭吸附去除强 力霉素及其非均相 Fenton 氧化再生[J]. 高校化学工 程学报 2015 29(5):1179-1185.
- [11] LIU Weifeng , ZHANG Jian , ZHANG Chenglu , et al.

Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from trapa natans husk [J]. Chemical Engineering Journal ,2010 ,162(2): 677-684.

- [12] HUANG Lihui , KONG Jiaojiao , WANG Weiliang , et al. Study on Fe (III) and Mn (II) modified activated carbons derived from zizania latifolia to removal basic fuchsin [J]. Desalination , 2012 , 286(1): 268-276.
- [13] ANNADURAI G , JUANG R S , LEE D J. Factorial design analysis for adsorption of dye on activated carbon beads incorporated with calcium alginate [J]. Advance in Environ Res , 2002 , 6 (2): 191–198.
- [14] ZHANG Xia , BAI Bo , WANG Honglun , et al. Facile fabrication of sea buckthorn biocarbon (SB) @ α -Fe₂O₃ composite catalysts and their applications for adsorptive removal of doxycycline wastewater through a cohesive het–erogeneous Fenton–like regeneration [J]. RSC Advance , 2016 , 6(44) : 38159–38168.
- [15] FUKUSHIMA M , TATSUMI K , MORIMOTO K. Influence of iron (III) and humic acid on the photodegradation of pentachlorophenol [J]. Environ Toxicol Chem , 2000 , 19(7): 1711-1716.
- [16] HUBERT N A. Chlorine from KMnO₄ + HCl [J]. J Chem Edu , 1969 , 46(3) : A218.

索	引
	索

 $\gamma \gamma \gamma$

 γ

苏州安特威阀门有限公司 封 面
华陆工程科技有限责任公司 封二、前插1
美国传热研究公司-HTRI Xchanger Suite 前插 2
天津市新天进科技开发有限公司 前插 3
上海化工研究院 国家高效分离塔填料及装置
技术研究推广中心前插4

江苏新宏大集团	前插5
上海冠龙阀门机械有限公司	前插6
华陆工程科技有限责任公司	前插7
南京华基塔业有限公司	前插8
哈尔滨博奥环境技术有限公司	封 三
华陆工程科技有限责任公司	封 底