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Abstract To clarify the response of soil organic carbon
(SOC) content to season-long grazing in the semiarid
typical steppes of Inner Mongolia, we examined the
aboveground biomass and SOC in both grazing (G-site)
and no grazing (NG-site) sites in two typical steppes
dominated by Leymus chinensis and Stipa grandis, as
well as one seriously degraded L. chinensis grassland
dominated by Artemisia frigida. The NG-sites had been
fenced for 20 years in L. chinensis and S. grandis grass-
lands and for 10 years in A. frigida grassland. Above-
ground biomass at G-sites was 21–35% of that at NG-
sites in L. chinensis and S. grandis grasslands. The SOC,
however, showed no significant difference between
G-site and NG-site in both grasslands. In the NG-sites,
aboveground biomass was significantly lower in A.
frigida grassland than in the other two grasslands. The

SOC in A. frigida grassland was about 70% of that in L.
chinensis grassland. In A. frigida grassland, aboveground
biomass in the G-site was 68–82% of that in the NG-
site, whereas SOC was significantly lower in the G-site
than in the NG-site. Grazing elevated the surface soil pH
in L. chinensis and A. frigida communities. A spatial
heterogeneity in SOC and pH in the topsoil was not
detected the G-site within the minimal sampling distance
of 10 m. The results suggested that compensatory
growth may account for the relative stability of SOC in
G-sites in typical steppes. The SOC was sensitive to
heavy grazing and difficult to recover after a significant
decline caused by overgrazing in semiarid steppes.

Keywords Aboveground biomass Æ Light grazing Æ
Carbon storage Æ Grasslands Æ Compensatory growth

Introduction

Grasslands of various types cover approximately 25.4%
of total land area (IPCC 2000). Most carbon (C) in
grassland ecosystems is stored in the soil, which ac-
counts for about 39% of the terrestrial inventory (IPCC
2000). The large proportion of soil C storage indicates
that grassland ecosystems have a high capacity to
sequestrate C in soil. Some studies show that world
grassland is currently an active C sink (Thornley et al.
1991; Fisher et al. 1995) and its size may increase greatly
in the future (Scholes and Hall 1996; Scurlock and Hall
1998). On the other hand, grassland ecosystems are
fragile and generally sensitive to climate change and
human activities (UNEP 1993). Hence, the huge C stock
in grassland soil may become a latent risk of large C
emission into the atmosphere under future climate con-
ditions (Parton et al. 1995) or improper management
(Batjes 1999).

Grazing is one of the most important factors that
could change the soil C stock in grassland ecosystems.
Today, natural grasslands are very rare or even non-
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existent (IUCN 1994). Slight or moderate grazing
intensity is generally beneficial to maintain biodiversity
and aboveground biomass production of grassland
ecosystems as compared with grazing exclusion
(McNaughton 1979; Hik and Jefferies 1990; Collins et al.
1998; Frank et al. 2003). Overgrazing, however, leads to
reduction of grassland production (Stuth et al. 1996;
Wang and Ripley 1997; Shang et al. 2003). It is well
known that soil C storage depends on the C input
mainly through the belowground parts of vegetation and
C release mediated by soil processes, which are influ-
enced by soil physical, chemical, and biological proper-
ties (Batjes 1999). Belowground processes may respond
differently from aboveground vegetation to grazing.
Frank et al. (1995) showed that change of community
structure induced by grazing did not necessarily lead to
decreased soil C storage. The ratio of C allocation to
shoot and root also responded differently to animal
grazing (Caldwell et al. 1981; Holland et al. 1992; Bi-
ondini et al. 1998; Leriche et al. 2001; Reeder and
Schuman 2002). The effect of grazing intensity on soil
physical, chemical and biological properties differed
greatly among soil categories, vegetation types, grazing
animals, and other factors (Lavado et al. 1995). Up to
now, there is still a discrepancy regarding the response of
soil C storage to grazing pressure (Conant et al. 2001b;
Reeder and Schuman 2002, and references therein). For
example, under moderate grazing pressure, soil C varied
from a decrease of 58% to an increase of 170% during
the experimental period. The absolute change of soil C
storage is in the range of a decrease of 2.40·104 kg C
ha�1 to an increase of 4.98·104 kg C ha�1 (Conant et al.
2001a).

The typical steppes of Inner Mongolia are located in
the east of the vast Euroasian grassland. Grazing has a
long history in Inner Mongolia grasslands and is still one
of the main management regimes. However, with the
transition from nomadism to settlement of herdsman
from the late 1940s, herd quantity increased greatly and
distribution patterns of herds changed substantially.
Consequently, grazing pressure was generally elevated,
particularly around settlements. The herd quantity in
Inner Mongolia rapidly increased from 19.3 million in
1947 to 74.1 million sheep units in 1975 and then oscil-
lated around 75.0 million sheep units thereafter. The
grazing patterns could change the soil C dynamics in this
grassland ecosystem, one of the largest temperate
grasslands in the world. Some showed a general trend of
soil C loss by grazing (Li et al. 1998), while other studies
reported a positive effect on soil C storage by grazing
(Wang and Chen 1998; Chuluun et al. 1999). However,
little detailed information is available for our under-
standing or predicting the soil C stock of this temperate
grassland.

Fenced non-grazing sites have been established for
20 years in two typical steppes, Leymus chinensis and
Stipa grandis grasslands, in Inner Mongolia (L-NG and
S-NG sites). Former studies indicated that the neigh-
boring grazing sites (L-G and S-G sites) were subject to

light grazing intensity (Xiao et al. 1997). In researches
concerning grazing in Inner Mongolia, non-grazing,
light-grazing, moderate-grazing, and heavy-grazing re-
ferred to grazing pressure corresponding to locations
from enclosure to dwelling or water points (Li and
Wang 1997). Nevertheless, the aboveground standing
living biomass in the NG-sites contrasted remarkably
with the corresponding G-sites and could be easily rec-
ognized in satellite images (Xiao et al. 1997). This paper
focuses on comparison of soil organic carbon (SOC) in
NG-sites with G-sites in order to address whether long-
term season-long grazing reduced SOC in the semiarid
steppes. A third grassland (A-NG and A-G sites), de-
graded from L. chinensis steppe by overgrazing, was also
included to determine if there was difference in response
of SOC to grazing by natural and degraded grasslands.

Materials and methods

Experimental treatment and site description

The experiment was conducted in three grasslands, two
natural ones, L. chinensis and S. grandis steppes, and a
degraded one, an Artemisia frigida grassland, each with
a fenced non-grazing site (L-NG, S-NG, and A-NG
sites) and a neighboring grazing site (L-G, S-G, and A-G
sites). The L-NG and S-NG sites (25 ha each) were
fenced in 1980 and the A-NG site was established in A.
frigida grassland in 1991, after serious degradation from
L. chinensis grassland.

The study site (43�32¢N and 116�40¢E) is in the Xilin
River basin where the UNESCO/MAB Xilingol Bio-
sphere Reserve is located. L. chinensis grassland and S.
grandis grassland are typical dominant steppes in this
area. Xiao et al. (1997) has given a detailed description
of vegetation, soil, and climate of the studied sites. In
brief, the dominant species are L. chinensis, S. grandis,
Koeleria cristata and Agropyron cristatum in the
L. chinensis grassland. S. grandis is the dominant species
at the S. grandis site. The degraded L. chinensis grass-
land is dominated by A. frigida and Cleistogenes squar-
rosa. The soils at all the sites are Kastanozems. They are
without a distinct CaCO3 layer at the L. chinensis and A.
frigida sites and with a clear CaCO3 layer below 50 cm
at the S. grandis site. The average annual temperature is
0.2�C and annual precipitation is 350 mm at the study
site. The growing season is from late April to early
October. Soil bulk density at 0–20 cm was 1.09, 1.16,
and 1.19 g cm3 in the L-NG, S-NG, and A-NG sites,
and 1.16, 1.21, and 1.32 gcm3 in L-G, S-G, and A-G
sites, respectively. In other soil layers, the G-site had
similar soil bulk density to the corresponding NG-site in
all the three grasslands. On average, soil texture is 21%
clay, 19% silt, and 60% sand in the L. chinensis site and
21% clay, 30% silt, and 49% sand at the S. grandis site
(Xiao et al. 1997). Soil texture has not been determined
at the A. frigida site.
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Collection and preparation of soil samples

Soil samples were taken from the NG-sites and the
nearby G-sites at each of the three grasslands on 18
May and 18 September 2000. For each sampling site,
five 1·1 m quadrats were determined randomly. Three
points were randomly taken with a soil auger in each
quadrat, and the samples were collected every 20 cm
to a soil depth of 80 cm. For each layer the soils from
the three drills were mixed into a bulk sample. A 60–
80 cm layer was only taken in L. chinensis and A.
frigida grasslands in May. It was too dry for soil
sampling in September and in the S. grandis grassland.
On 12 August, soil sampling (0–10 cm) was conducted
at 10 m intervals along two 1,200 m long transects at
the NG-site and the neighboring G-site in L. chinensis
grassland. The data showed no significant spatial auto
correlation for SOC or soil pH in either of the
grasslands (Fig.1, analyzed with the geo-statistical
methods described in Pannatier 1996). Based on the
121 samples from each site, we calculated that five
random samples were sufficient to ensure that the
mean of SOC and pH were within ±10% of the
respective expectation with 95% confidence.

The samples were air dried in the laboratory and
ground to pass a 100-mesh screen. Tiny litter or roots
were removed through adsorption by a plastic rod rub-
bed with a silk cloth before determination of chemical
properties.

Determination of aboveground biomass of vegetation

Together with soil sample collection, aboveground
plant biomass was gathered in five quadrats from each
site. Plants were cut above the soil surface. Litter and
standing dead parts were removed. The living plant
parts were oven-dried at 80�C to constant weight and
ground for analysis. In August, five 1·1 m quadrats
were randomly selected in each of these transects in
L. chinensis grassland.

Analysis of soil and plant chemical properties

Soil total C content was measured with an EC-12 Car-
bon Determinator (LECO, USA). Soil was weighed to
about 0.3000 g and mixed with Cu and Fe powder. The
sample was then combusted in a high frequency furnace
and the released CO2 content was measured by means of
an IR cell. Soil inorganic C was determined by adding
25 ml of 3 mol l�1 HCl solution to 5.0 g soil and mea-
suring the volume of the released CO2 after shaking for
4 min. The SOC was calculated by subtracting the
inorganic C content from the total C content. Soil pH
was measured by means of a digital pH meter (Metrohm
E500) in a suspension of 10.0 g soil and 25.0 ml
0.01 mol l�1 CaCl2 solution.

Plant samples ( 2.000 g) were digested in a muffel
furnace at 480�C overnight. The residue was resolved
with 10 ml of 4 mol l�1 HNO3 for 2 h and diluted to
50 ml with deionised water. In the filtrated solution the
phosphorus (P) and potassium (K) contents were mea-
sured. The P was determined by spectrometry after
reacting with ammonium molybdate reagent and K was
determined by flame photometry (Eppendorf ELEX
6361).

Estimation of SOC storage

The SOC storage was calculated by summing the prod-
uct of SOC content in each soil layer and the corre-
sponding bulk density within an 80 cm depth. As bulk
density was not determined simultaneously, mean bulk
density and mean SOC content were used for each soil
layer. Therefore, standard deviation could not be cal-
culated, as shown in Fig.2.

Data analysis

SPSS and StatView were used for statistical evaluation
to compare the mean values of plant biomass, soil C
and pH between G-sites and NG-sites in each grass-
land. VARIOWIN was adopted for geo-statistic
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calculation. Lag tolerance was set to 0.5 (5 m).
Spherical and Gaussian models were used to fit the
semi-variogram curves. Only the points with more than
30 data pairs were used in diagrams and calculations.

Results

Soil organic carbon content

The SOC content was relatively constant during growing
seasons. It was significantly higher in the surface layer
than the lower soil layers in all the three sites (P<0.0001,
Table 1). The ratio of SOC content in the 0–20 cm layer
to that in the 20–40 cm layer was higher in L-G sites than
in L-NG sites (1.70 vs 1.49, n=20, P=0.129) and in A-G
than in A-NG sites (3.10 vs 2.00, n=20, P<0.0001). The
difference between S-G and S-NG sites was unclear (1.80
vs 2.44, n=20, P=0.308).

Grazing regime did not significantly alter SOC con-
tent (Table 1) or SOC stock (Fig. 3) in L. chinensis and
S. grandis grasslands; neither did grazing induce signif-
icant change in the spatial pattern (Fig. 1) or distribu-
tion of SOC along soil profile in either grassland
(Table 1).

The A. frigida dominated degraded grassland con-
tained significantly lower SOC content in every soil
layer than that in L. chinensis grassland in NG-sites
(P<0.01, Table 1). Its SOC stock was approximately
70% of that in L. chinensis grassland in NG-sites (Fig.
3). Compared with the NG-site in L. chinensis grass-
land, SOC in NG-site in A. frigida grassland was 38–
48% and 28% lower in 20–80 cm layers and the surface
layer (0–20 cm, Table 1) respectively. Grazing induced
a further decrease of SOC by about 40% in A. frigida
grassland (Fig. 3). In this grassland, grazing caused a
significant decrease of SOC for all the soil layers
(Table 1), and the declination was more remarkable in
lower soil layers than in the surface soil layer, as shown
by the rate of SOC in the G-site and NG-site (G/NG in
Table 1).

Soil pH

Soil pH tended to increase from the surface layer
downward. It was significantly different between May
and September. Soil pH in S. grandis grassland was
higher than in the other two grasslands and did not show
an obvious response to grazing regime (Fig. 4). Al-
though not statistically significant, grazing induced an
increase in soil pH in both L. chinensis and A. frigida
communities in May (Fig. 4). In the L. chinensis com-
munity, grazing led to a significantly higher soil pH at
the surface soil layer in August (6.66 in the G-site vs 6.52
in NG-site, n=242, P<0.05). Spatial samples showed a
negatively weak correlation between pH and SOC in
surface soil (R=�0.179, n=242, P=0.007).

Plant aboveground biomass, P and K contents

The aboveground biomass was in general lower in G-sites
than NG-sites, but the grazing effect differed in grass-
lands dominated by different species. Grazing resulted
in a significant decrease by 65–79% of aboveground

Table 1 Distribution of SOC content along soil profile in the
three grasslands in grazing (G-site) and non-grazing (NG-site)
sites. Samples taken in May and September were treated as
replicates in statistical analysis because soil organic content was
relatively constant within such short times and no significant
difference was detected between these two sampling periods. The
t-test was performed to compare means of SOC content in the

same soil layer in NG-site and G-site in each of the three
grasslands. *, **, and *** denote difference at the level of 0.05,
0.01, and 0.001, respectively. No significant difference was de-
tected between the NG-site and the G-site in any soil layer in
L. chinensis and S. grandis grasslands. Soil depth was less than
60 cm in S. grandis grassland and no samples were taken for the
60–80 cm layer

Layer(cm) Soil organic carbon content (mg g�1 soil)

L. chinensis S. grandis A. frigida

NG-site G-site NG-site G-site NG-site G-site G/NG

0–20 16.17±1.76 16.71±1.36 15.12±1.70 14.84±0.73 11.64±3.11* 8.34±2.15 0.72
20–40 9.90±0.61 9.86±0.36 7.57±2.05 9.06±3.53 6.17±2.77*** 2.74±0.67 0.44
40–60 8.48±0.24 8.76±0.67 5.68±0.83 5.63±1.03 4.46±2.00* 2.40±1.34 0.54
60–80 8.04±0.28 8.11±0.15 – – 4.71±1.32** 1.63±0.78 0.35

Fig. 3 Soil organic carbon stock in the upper 60 cm soil layers in
L. chinensis, S. grandis, and A. frigida grasslands under grazing and
non-grazing treatments
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biomass in L. chinensis and S. grandis communities, as
compared with the NG-sites in August (Table 2).

Aboveground living biomass of plant communities
generally peaked around late August in Inner Mongo-

lian steppe. Therefore, there was no significant difference
in aboveground biomass measured on August 13 and
September 19 in all the sampling-sites, except for G-site
in L. chinensis grassland (Table 2). Plant aboveground
biomass increased by about two times and became
similar to that in the fenced-site in this case, owing to
exclusion of grazing by establishing a new fence imme-
diately after the first biomass measurement in the G-site
in L. chinensis grassland.

Grazing significantly reduced plant P and K content
in May in L. chinensis and A. frigida grasslands. It in-
duced a declination of K content by 29–49% in August.
Nevertheless, plant P content was similar between G-
sites and NG-sites in August (Table 3). Current stock of
P and K in aboveground biomass was much higher in
NG-site than in grazing locations in all the three vege-
tation types.

Discussion

The SOC is determined by C input mainly from
aboveground litter production, root turnover and ani-
mal excreta, and C output through soil respiration, soil
erosion and leaching. Soil erosion and leaching loss of
SOC were not significant in the semiarid steppes (Li
et al. 2004).

Effect of grazing on aboveground NPP, and conse-
quently litter production, varied remarkably in different
experiments. Many studies have observed maintenance
or stimulation of aboveground NPP under grazing,
which is termed compensatory or over-compensatory
growth response to grazing (McNaughton 1979; Hik
and Jefferies 1990; Pandy and Singh 1992; Leriche et al.
2001). The underlying mechanisms included stimulation
of tillering (Briske and Richards 1995), reduction of self-
shading and promotion of photosynthesis in remaining
tissues (Doescher et al. 1997). In this study, a large
reduction of standing living biomass was also observed
in G-sites of all the grasslands (Table 2). In Inner
Mongolian grazing regimes, animals browse grasslands
daily even on days with snow cover. Aboveground bio-
mass was greatly depressed throughout the whole
growing season even under light grazing, which differed
remarkably from other studies where vegetation recov-
ered largely or fully after grazing in rotational grazing
regimes (McNaughton 1983; Manske 1999). The data
for L. chinensis grasslands clearly indicated a compen-
satory growth after exclusion of grazing (Table 2).
Former studies showed that cutting stimulated photo-
synthetic capacity of the remaining part of leaves in this
species by 25 and 40% and of recruited leaf by 68 and
55% in strong and weak light (Cui 2000). The large in-
crease of C fixation capacity interacting with reduction
of self-shading may lead to similar or even higher veg-
etation production in G-sites than NG-sites. Soil nutri-
ent contents were reported to be similar in L. chinensis
and S. grandis grasslands, and they did not differ sig-
nificantly between NG-sites and lightly grazed locations
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Fig. 4 Soil pH along soil profile of L. chinensis, S. grandis, and
A. frigida grasslands under grazing and non-grazing treatment in
May and September. SD of data set for each point is not presented.
The SE calculated by LSD method was given as the short bar in
each diagram for clarity

Table 2 Comparison of aboveground plant biomass of L. chinen-
sis, S. grandis, and A. frigida grasslands in grazing (G-site) and non-
grazing (NG-site)-sites. The t-test was performed to compare means
of biomass between the G-site and the NG-site sampled on the
same date in each of the three grasslands. * and *** denote dif-
ference at the level of 0.05 and 0.001, respectively

Grasslands
indicated by
dominant species

Grazing
regime

Biomass (g m�2)

August 13 September 19

L. chinensis NG-site 157.2±31.4*** 152.1±30.3
G-site 49.4±21.2 150.9±31.7

S. grandis NG-site 105.0±24.0*** 75.4±8.3*
G-site 21.9±7.4 26.7±4.8

A. frigida NG-site 81.4±14.3 80.2±7.0
G-site 55.2±31.7 65.80±4.4
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in either grassland (Guan et al. 1997). Therefore,
S. grandis grassland was likely to have compensatory
growth because soil nutrient status mainly controlled the
direction and degree of responses of biomass production
and soil biological processes to grazing (Milchunas et al.
1988; Leriche et al. 2001; Harrison and Bardgett 2004).
Over-compensation was also observed in A. frigida
grassland under light grazing pressure (Wang et al.
1998).

Belowground NPP was more than three times
aboveground NPP in L. chinensis and S. grandis grass-
lands (Li et al. 2002b). Since daily browsing by herds
removed most of the litter, organic matter input into the
soil should principally depend on root turnover and
animal excreta in G-sites. Some studies reported that
grazing depressed belowground NPP and root biomass
(Holland et al. 1992; Schuman et al. 1999), whereas
others did not observe detectable effects (Holland et al.
1992; Biondini et al. 1998; McNaughton et al. 1998). In
grazing sites, roots rapidly proliferate in localized soil
regions of high mineralization, such as sites with dung
and urine (Jackson and Caldwell 1993). Root/shoot
allocation was reported to decrease for grazing tolerant
species, increase or remain unchanged in other species
(Caldwell et al. 1981; Holland et al. 1992; Pandy and
Singh 1992; Biondini et al. 1998; McNaughton et al.
1998). The dominant species in natural steppes in Inner
Mongolia, L. chinensis and S. grandis, were grazing
sensitive. The ratio of root/shoot was significantly higher
in the heavily grazed location than in NG-sites in
L. chinensis grassland (14.38 in the heavily grazed site vs
9.26 in the NG-site, Li et al. 2000). As mentioned before,
compensatory growth was common in the G-sites. Since
aboveground growth cannot increase or be maintained
when root growth is inhibited (McNaughton et al. 1998),
it is reasonable to assume that root productivity and
turnover was maintained or stimulated in G-sites in
the grasslands studied. This was supported by a study in
L. chinensis grassland (Li et al. 2002b).

Grazing decreased soil respiration in a tallgrass
prairie and an alpine meadow (Bremer et al. 1998; Cao
et al. 2004) but did not decrease it in shortgrass steppe
or northern mixed prairie in the USA (Mayeux et al.
2002). In the studied steppe, soil respiration was highly

correlated with soil moisture in the L. chinensis (Li
et al. 2000) and S. grandis (Cui et al. 2000) grasslands.
Root biomass showed an insignificant correlation with
soil respiration (Cui et al. 2000; Li et al. 2002a).
Grazing led to a decrease in soil moisture status, in-
creased soil bulk density and surface soil hardness (Jia
et al. 1997). Soil pH is one of the important environ-
mental factors that influence SOC accumulation and
decomposition (Trumbore 1997; Nott et al. 1998;
Sjögersten et al. 2003). Topsoil pH was found to clo-
sely correlate with precipitation at a large spatial scale
in arid areas. Soils under less precipitation have higher
pH due to higher content of cations and CaCO3 in
topsoil layers (Schillinger et al. 2003; Bhattacharyya
et al. 2004). Such correlation also exists in terms of
temporal scale. For instance, soils in Hunsandak in
Inner Mongolia had significantly lower pH 4,000–
8,000 years BP than that at present, indicating more
humid conditions at that time (Zhou and Zhang 1992).
In this manuscript, pH at 0–10 cm soil was signifi-
cantly higher in May than in September in L. chinensis
and A. frigida (Fig.4) grasslands, because of precipi-
tation during the growing season. Generally, soil dry-
ing may induce pH increase in top layers in arid zones.
Animal grazing decreased land cover of vegetation and
caused soil compaction. Water loss increased through
evaporation owing to higher temperature and wind at
soil surface, and through runoff owing to soil com-
paction. Surface soil drying was observed in grazed
grasslands (Dolan and Taylor 1972). Therefore, an
elevation of surface soil pH reflected a decrease in soil
humidity in L. chinensis and A. frigida grassland fol-
lowing grazing (Fig.4). All these factors may reduce
soil respiration in G-sites. The maintenance of soil
respiration in heavily grazed-sites was caused by either
increased soil C content (Mayeux et al. 2002) or a
large deposit of animal excreta (Li et al. 2000).

The SOC content was little influenced by light grazing
in L. chinensis and S. grandis grasslands in this study
(Table 1). As analyzed previously, compensatory growth
induced higher translocation of assimilated C to
belowground, as well as lower soil respiration loss of
SOC was supposed to largely account for the relative
stability of SOC under light grazing.

Table 3 Aboveground plant P and K content in May and August
as well as current stock of P and K in aboveground biomass in
August in L. chinensis, S. grandis, and A. frigida grasslands in
grazing (G-site) and non-grazing (NG-site)-sites. Statistics was

performed only for contents of the same element in the same
grassland. Different letters denote significant difference at P=0.05
with Duncan’s post hoc test

Site Treatment P content (mg g�1) K content (mg g�1) Stock in plant
(mg m�2)

May August May August P K

L. chinensis NG-site 2.30±0.12a 1.10±0.17c 22.77±3.27a 11.64±1.81c 86.6 915.6
G-site 1.88±0.21b 0.97±0.03c 15.39±0.68b 9.40±1.28c 23.9 232.0

S. grandis NG-site 1.88±0.19a 0.74±0.08c 15.51±1.37a 11.37±1.79b 38.6 597.2
G-site 1.75±0.07a 0.92±0.08b 14.31±1.02a 5.83±0.61c 10.1 63.9

A. frigida NG-site 1.84±0.30a 1.41±0.21b 10.36±2.81ab 13.85±1.72a 57.6 563.5
G-site 1.13±0.35b 1.42±0.24b 5.70±3.20c 9.82±1.73b 39.1 271.0
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While total SOC did not change obviously, its labile
component may decrease substantially under grazing.
Such a feature was observed in a mixed prairie under
moderate grazing (Holt 1997). The active part of soil
organic matter lost the greatest proportion in shortgrass
steppe after reducing plant inputs (Kelly et al. 1996).
Bacteria number decreased by more than 57% after light
grazing in L. chinensis grassland (Liu and Liao 1997).
Labile SOC content was 0.207% in the L-NG site (Wang
et al. 2003). This accounted for approximately 12% of
total SOC, within the reported range of from 2 to more
than 50% in semiarid grasslands (Chan 1997; Gill et al.
1999; Kaye et al. 2002).

The SOC content in the typical steppes in Inner
Mongolia was suggested to be sensitive to grazing (Xiao
et al. 1996; Ojima et al. 1999). The SOC was reduced in L.
chinensis grassland in northwestern China under grazing
(Wang and Ripley 1997). In this study, the G-sites were
near to the NG-sites and far away from either dwellings
or water points. Based on grassland area, herd quantity,
and distribution, the grazing intensity in G-sites was
estimated to be around one sheep unit per hectare. The
much lower value of SOC in the NG-site of A. frigida
grassland than that in L. chinensis indicated that over-
grazing led to a significant loss of SOC that was difficult
to recover from in the grasslands (Table 1). The SOC
continued to decrease under light grazing in the degraded
grassland (Table 1), though aboveground biomass was
removed by a much lower proportion due to grazing in
this grassland than in the others (Table 2). Greater or-
ganic C loss occurred in the lower soil layers than in the
surface soil layer (Table 1). This was mainly due to the
change of dominant species from L. chinensis to A. frig-
ida and C. squarrosa. The latter species had less root
quantity and a shallower distribution in soil (Wang and
Wang 2001). Root productivity may decrease as a result
of depression in aboveground NPP. These species were
grazing tolerant and the ratio of root/shoot decreased in
grazed locations (13.60 vs 9.64 in A-NG and A-G sites,
Wang and Wang 2001). Consequently, C input through
root turnover and exudation also reduced, which had a
greater effect on deep soil layers than the surface layer
where most of roots were distributed. Furthermore,
change of soil physical properties, such as increase of
hardness and bulk density, limited water and SOC
transportation into lower soil layers.

In summary, SOC content and spatial heterogeneity
did not change obviously with the current grazing re-
gime under light grazing pressure for 20 years in the
typical steppe of Inner Mongolia (Figs. 1, 3, Table 1).
Nevertheless, subtle influences of long-term grazing
could be discerned. For example, nutrient cycling was
depressed to some extent. The P and K content and
stock in aboveground phytomass were sometimes sig-
nificantly lower in G-sites (Table 3). The decrease of
recycling through litter production and removal from
the grassland by animal production decreased available
soil nutrient content. Where the active component of
SOC decreased in the G-sites, soil available nitrogen

content also declined because N mineralization rate was
the highest in this component (Paul 1984; Kerek et al.
2003). Besides, higher surface soil pH in the L. chinensis
and A. frigida grasslands also demonstrated a tendency
of deteriorating soil physical properties and decreasing
SOC induced by grazing (Fig. 4). High soil pH, in turn,
had negative effects on nutrient availability and uptake
(Marschner 1995), and consequently on plant compen-
satory growth (Proulx and Mazumder 1998). Although
seasonal samples did not detect significant changes of
SOC (Table 1), intensive sampling by transects did show
a 3% decrease (P=0.072, n=242) by long-term grazing
in L. chinensis grassland (Fig. 2). This study, therefore,
suggests that long-term observation is needed to clarify
SOC dynamics under light grazing. Nevertheless, SOC
was sensitive to overgrazing and SOC was slow to re-
cover merely by enclosure when it declined following
overgrazing in the semiarid typical steppes in Inner
Mongolia.
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